bessel_k.c from R math library.

/*
 *  Mathlib : A C Library of Special Functions
 *  Copyright (C) 1998-2014 Ross Ihaka and the R Core team.
 *  Copyright (C) 2002-3    The R Foundation
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, a copy is available at
 *  https://www.R-project.org/Licenses/
 */

/*  DESCRIPTION --> see below */


/* From http://www.netlib.org/specfun/rkbesl    Fortran translated by f2c,...
 *  ------------------------------=#----    Martin Maechler, ETH Zurich
 */
#include "nmath.h"
#include "bessel.h"

#ifndef MATHLIB_STANDALONE
#include <R_ext/Memory.h>
#endif

#define min0(x, y) (((x) <= (y)) ? (x) : (y))
#define max0(x, y) (((x) <= (y)) ? (y) : (x))

static void K_bessel(double *x, double *alpha, int *nb,
             int *ize, double *bk, int *ncalc);

double bessel_k(double x, double alpha, double expo)
{
    int nb, ncalc, ize;
    double *bk;
#ifndef MATHLIB_STANDALONE
    const void *vmax;
#endif

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
    ML_ERROR(ME_RANGE, "bessel_k");
    return ML_NAN;
    }
    ize = (int)expo;
    if(alpha < 0)
    alpha = -alpha;
    nb = 1+ (int)floor(alpha);/* nb-1 <= |alpha| < nb */
    alpha -= (double)(nb-1);
#ifdef MATHLIB_STANDALONE
    bk = (double *) calloc(nb, sizeof(double));
    if (!bk) MATHLIB_ERROR("%s", _("bessel_k allocation error"));
#else
    vmax = vmaxget();
    bk = (double *) R_alloc((size_t) nb, sizeof(double));
#endif
    K_bessel(&x, &alpha, &nb, &ize, bk, &ncalc);
    if(ncalc != nb) {/* error input */
      if(ncalc < 0)
    MATHLIB_WARNING4(_("bessel_k(%g): ncalc (=%d) != nb (=%d); alpha=%g. Arg. out of range?\n"),
             x, ncalc, nb, alpha);
      else
    MATHLIB_WARNING2(_("bessel_k(%g,nu=%g): precision lost in result\n"),
             x, alpha+(double)nb-1);
    }
    x = bk[nb-1];
#ifdef MATHLIB_STANDALONE
    free(bk);
#else
    vmaxset(vmax);
#endif
    return x;
}

/* modified version of bessel_k that accepts a work array instead of
   allocating one. */
double bessel_k_ex(double x, double alpha, double expo, double *bk)
{
    int nb, ncalc, ize;

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
    ML_ERROR(ME_RANGE, "bessel_k");
    return ML_NAN;
    }
    ize = (int)expo;
    if(alpha < 0)
    alpha = -alpha;
    nb = 1+ (int)floor(alpha);/* nb-1 <= |alpha| < nb */
    alpha -= (double)(nb-1);
    K_bessel(&x, &alpha, &nb, &ize, bk, &ncalc);
    if(ncalc != nb) {/* error input */
      if(ncalc < 0)
    MATHLIB_WARNING4(_("bessel_k(%g): ncalc (=%d) != nb (=%d); alpha=%g. Arg. out of range?\n"),
             x, ncalc, nb, alpha);
      else
    MATHLIB_WARNING2(_("bessel_k(%g,nu=%g): precision lost in result\n"),
             x, alpha+(double)nb-1);
    }
    x = bk[nb-1];
    return x;
}

static void K_bessel(double *x, double *alpha, int *nb,
             int *ize, double *bk, int *ncalc)
{
/*-------------------------------------------------------------------

  This routine calculates modified Bessel functions
  of the third kind, K_(N+ALPHA) (X), for non-negative
  argument X, and non-negative order N+ALPHA, with or without
  exponential scaling.

  Explanation of variables in the calling sequence

 X     - Non-negative argument for which
     K's or exponentially scaled K's (K*EXP(X))
     are to be calculated.  If K's are to be calculated,
     X must not be greater than XMAX_BESS_K.
 ALPHA - Fractional part of order for which
     K's or exponentially scaled K's (K*EXP(X)) are
     to be calculated.  0 <= ALPHA < 1.0.
 NB    - Number of functions to be calculated, NB > 0.
     The first function calculated is of order ALPHA, and the
     last is of order (NB - 1 + ALPHA).
 IZE   - Type.  IZE = 1 if unscaled K's are to be calculated,
            = 2 if exponentially scaled K's are to be calculated.
 BK    - Output vector of length NB.    If the
     routine terminates normally (NCALC=NB), the vector BK
     contains the functions K(ALPHA,X), ... , K(NB-1+ALPHA,X),
     or the corresponding exponentially scaled functions.
     If (0 < NCALC < NB), BK(I) contains correct function
     values for I <= NCALC, and contains the ratios
     K(ALPHA+I-1,X)/K(ALPHA+I-2,X) for the rest of the array.
 NCALC - Output variable indicating possible errors.
     Before using the vector BK, the user should check that
     NCALC=NB, i.e., all orders have been calculated to
     the desired accuracy.  See error returns below.


 *******************************************************************

 Error returns

  In case of an error, NCALC != NB, and not all K's are
  calculated to the desired accuracy.

  NCALC < -1:  An argument is out of range. For example,
    NB <= 0, IZE is not 1 or 2, or IZE=1 and ABS(X) >= XMAX_BESS_K.
    In this case, the B-vector is not calculated,
    and NCALC is set to MIN0(NB,0)-2     so that NCALC != NB.
  NCALC = -1:  Either  K(ALPHA,X) >= XINF  or
    K(ALPHA+NB-1,X)/K(ALPHA+NB-2,X) >= XINF.     In this case,
    the B-vector is not calculated. Note that again
    NCALC != NB.

  0 < NCALC < NB: Not all requested function values could
    be calculated accurately.  BK(I) contains correct function
    values for I <= NCALC, and contains the ratios
    K(ALPHA+I-1,X)/K(ALPHA+I-2,X) for the rest of the array.


 Intrinsic functions required are:

     ABS, AINT, EXP, INT, LOG, MAX, MIN, SINH, SQRT


 Acknowledgement

    This program is based on a program written by J. B. Campbell
    (2) that computes values of the Bessel functions K of float
    argument and float order.  Modifications include the addition
    of non-scaled functions, parameterization of machine
    dependencies, and the use of more accurate approximations
    for SINH and SIN.

 References: "On Temme's Algorithm for the Modified Bessel
          Functions of the Third Kind," Campbell, J. B.,
          TOMS 6(4), Dec. 1980, pp. 581-586.

         "A FORTRAN IV Subroutine for the Modified Bessel
          Functions of the Third Kind of Real Order and Real
          Argument," Campbell, J. B., Report NRC/ERB-925,
          National Research Council, Canada.

  Latest modification: May 30, 1989

  Modified by: W. J. Cody and L. Stoltz
           Applied Mathematics Division
           Argonne National Laboratory
           Argonne, IL  60439

 -------------------------------------------------------------------
*/
    /*---------------------------------------------------------------------
     * Mathematical constants
     *  A = LOG(2) - Euler's constant
     *  D = SQRT(2/PI)
     ---------------------------------------------------------------------*/
    const static double a = .11593151565841244881;

    /*---------------------------------------------------------------------
      P, Q - Approximation for LOG(GAMMA(1+ALPHA))/ALPHA + Euler's constant
      Coefficients converted from hex to decimal and modified
      by W. J. Cody, 2/26/82 */
    const static double p[8] = { .805629875690432845,20.4045500205365151,
        157.705605106676174,536.671116469207504,900.382759291288778,
        730.923886650660393,229.299301509425145,.822467033424113231 };
    const static double q[7] = { 29.4601986247850434,277.577868510221208,
        1206.70325591027438,2762.91444159791519,3443.74050506564618,
        2210.63190113378647,572.267338359892221 };
    /* R, S - Approximation for (1-ALPHA*PI/SIN(ALPHA*PI))/(2.D0*ALPHA) */
    const static double r[5] = { -.48672575865218401848,13.079485869097804016,
        -101.96490580880537526,347.65409106507813131,
        3.495898124521934782e-4 };
    const static double s[4] = { -25.579105509976461286,212.57260432226544008,
        -610.69018684944109624,422.69668805777760407 };
    /* T    - Approximation for SINH(Y)/Y */
    const static double t[6] = { 1.6125990452916363814e-10,
        2.5051878502858255354e-8,2.7557319615147964774e-6,
        1.9841269840928373686e-4,.0083333333333334751799,
        .16666666666666666446 };
    /*---------------------------------------------------------------------*/
    const static double estm[6] = { 52.0583,5.7607,2.7782,14.4303,185.3004, 9.3715 };
    const static double estf[7] = { 41.8341,7.1075,6.4306,42.511,1.35633,84.5096,20.};

    /* Local variables */
    int iend, i, j, k, m, ii, mplus1;
    double x2by4, twox, c, blpha, ratio, wminf;
    double d1, d2, d3, f0, f1, f2, p0, q0, t1, t2, twonu;
    double dm, ex, bk1, bk2, nu;

    ii = 0; /* -Wall */

    ex = *x;
    nu = *alpha;
    *ncalc = min0(*nb,0) - 2;
    if (*nb > 0 && (0. <= nu && nu < 1.) && (1 <= *ize && *ize <= 2)) {
    if(ex <= 0 || (*ize == 1 && ex > xmax_BESS_K)) {
        if(ex <= 0) {
        if(ex < 0) ML_ERROR(ME_RANGE, "K_bessel");
        for(i=0; i < *nb; i++)
            bk[i] = ML_POSINF;
        } else /* would only have underflow */
        for(i=0; i < *nb; i++)
            bk[i] = 0.;
        *ncalc = *nb;
        return;
    }
    k = 0;
    if (nu < sqxmin_BESS_K) {
        nu = 0.;
    } else if (nu > .5) {
        k = 1;
        nu -= 1.;
    }
    twonu = nu + nu;
    iend = *nb + k - 1;
    c = nu * nu;
    d3 = -c;
    if (ex <= 1.) {
        /* ------------------------------------------------------------
           Calculation of P0 = GAMMA(1+ALPHA) * (2/X)**ALPHA
                  Q0 = GAMMA(1-ALPHA) * (X/2)**ALPHA
           ------------------------------------------------------------ */
        d1 = 0.; d2 = p[0];
        t1 = 1.; t2 = q[0];
        for (i = 2; i <= 7; i += 2) {
        d1 = c * d1 + p[i - 1];
        d2 = c * d2 + p[i];
        t1 = c * t1 + q[i - 1];
        t2 = c * t2 + q[i];
        }
        d1 = nu * d1;
        t1 = nu * t1;
        f1 = log(ex);
        f0 = a + nu * (p[7] - nu * (d1 + d2) / (t1 + t2)) - f1;
        q0 = exp(-nu * (a - nu * (p[7] + nu * (d1-d2) / (t1-t2)) - f1));
        f1 = nu * f0;
        p0 = exp(f1);
        /* -----------------------------------------------------------
           Calculation of F0 =
           ----------------------------------------------------------- */
        d1 = r[4];
        t1 = 1.;
        for (i = 0; i < 4; ++i) {
        d1 = c * d1 + r[i];
        t1 = c * t1 + s[i];
        }
        /* d2 := sinh(f1)/ nu = sinh(f1)/(f1/f0)
         *     = f0 * sinh(f1)/f1 */
        if (fabs(f1) <= .5) {
        f1 *= f1;
        d2 = 0.;
        for (i = 0; i < 6; ++i) {
            d2 = f1 * d2 + t[i];
        }
        d2 = f0 + f0 * f1 * d2;
        } else {
        d2 = sinh(f1) / nu;
        }
        f0 = d2 - nu * d1 / (t1 * p0);
        if (ex <= 1e-10) {
        /* ---------------------------------------------------------
           X <= 1.0E-10
           Calculation of K(ALPHA,X) and X*K(ALPHA+1,X)/K(ALPHA,X)
           --------------------------------------------------------- */
        bk[0] = f0 + ex * f0;
        if (*ize == 1) {
            bk[0] -= ex * bk[0];
        }
        ratio = p0 / f0;
        c = ex * DBL_MAX;
        if (k != 0) {
            /* ---------------------------------------------------
               Calculation of K(ALPHA,X)
               and  X*K(ALPHA+1,X)/K(ALPHA,X),  ALPHA >= 1/2
               --------------------------------------------------- */
            *ncalc = -1;
            if (bk[0] >= c / ratio) {
            return;
            }
            bk[0] = ratio * bk[0] / ex;
            twonu += 2.;
            ratio = twonu;
        }
        *ncalc = 1;
        if (*nb == 1)
            return;

        /* -----------------------------------------------------
           Calculate  K(ALPHA+L,X)/K(ALPHA+L-1,X),
           L = 1, 2, ... , NB-1
           ----------------------------------------------------- */
        *ncalc = -1;
        for (i = 1; i < *nb; ++i) {
            if (ratio >= c)
            return;

            bk[i] = ratio / ex;
            twonu += 2.;
            ratio = twonu;
        }
        *ncalc = 1;
        goto L420;
        } else {
        /* ------------------------------------------------------
           10^-10 < X <= 1.0
           ------------------------------------------------------ */
        c = 1.;
        x2by4 = ex * ex / 4.;
        p0 = .5 * p0;
        q0 = .5 * q0;
        d1 = -1.;
        d2 = 0.;
        bk1 = 0.;
        bk2 = 0.;
        f1 = f0;
        f2 = p0;
        do {
            d1 += 2.;
            d2 += 1.;
            d3 = d1 + d3;
            c = x2by4 * c / d2;
            f0 = (d2 * f0 + p0 + q0) / d3;
            p0 /= d2 - nu;
            q0 /= d2 + nu;
            t1 = c * f0;
            t2 = c * (p0 - d2 * f0);
            bk1 += t1;
            bk2 += t2;
        } while (fabs(t1 / (f1 + bk1)) > DBL_EPSILON ||
             fabs(t2 / (f2 + bk2)) > DBL_EPSILON);
        bk1 = f1 + bk1;
        bk2 = 2. * (f2 + bk2) / ex;
        if (*ize == 2) {
            d1 = exp(ex);
            bk1 *= d1;
            bk2 *= d1;
        }
        wminf = estf[0] * ex + estf[1];
        }
    } else if (DBL_EPSILON * ex > 1.) {
        /* -------------------------------------------------
           X > 1./EPS
           ------------------------------------------------- */
        *ncalc = *nb;
        bk1 = 1. / (M_SQRT_2dPI * sqrt(ex));
        for (i = 0; i < *nb; ++i)
        bk[i] = bk1;
        return;

    } else {
        /* -------------------------------------------------------
           X > 1.0
           ------------------------------------------------------- */
        twox = ex + ex;
        blpha = 0.;
        ratio = 0.;
        if (ex <= 4.) {
        /* ----------------------------------------------------------
           Calculation of K(ALPHA+1,X)/K(ALPHA,X),  1.0 <= X <= 4.0
           ----------------------------------------------------------*/
        d2 = trunc(estm[0] / ex + estm[1]);
        m = (int) d2;
        d1 = d2 + d2;
        d2 -= .5;
        d2 *= d2;
        for (i = 2; i <= m; ++i) {
            d1 -= 2.;
            d2 -= d1;
            ratio = (d3 + d2) / (twox + d1 - ratio);
        }
        /* -----------------------------------------------------------
           Calculation of I(|ALPHA|,X) and I(|ALPHA|+1,X) by backward
           recurrence and K(ALPHA,X) from the wronskian
           -----------------------------------------------------------*/
        d2 = trunc(estm[2] * ex + estm[3]);
        m = (int) d2;
        c = fabs(nu);
        d3 = c + c;
        d1 = d3 - 1.;
        f1 = DBL_MIN;
        f0 = (2. * (c + d2) / ex + .5 * ex / (c + d2 + 1.)) * DBL_MIN;
        for (i = 3; i <= m; ++i) {
            d2 -= 1.;
            f2 = (d3 + d2 + d2) * f0;
            blpha = (1. + d1 / d2) * (f2 + blpha);
            f2 = f2 / ex + f1;
            f1 = f0;
            f0 = f2;
        }
        f1 = (d3 + 2.) * f0 / ex + f1;
        d1 = 0.;
        t1 = 1.;
        for (i = 1; i <= 7; ++i) {
            d1 = c * d1 + p[i - 1];
            t1 = c * t1 + q[i - 1];
        }
        p0 = exp(c * (a + c * (p[7] - c * d1 / t1) - log(ex))) / ex;
        f2 = (c + .5 - ratio) * f1 / ex;
        bk1 = p0 + (d3 * f0 - f2 + f0 + blpha) / (f2 + f1 + f0) * p0;
        if (*ize == 1) {
            bk1 *= exp(-ex);
        }
        wminf = estf[2] * ex + estf[3];
        } else {
        /* ---------------------------------------------------------
           Calculation of K(ALPHA,X) and K(ALPHA+1,X)/K(ALPHA,X), by
           backward recurrence, for  X > 4.0
           ----------------------------------------------------------*/
        dm = trunc(estm[4] / ex + estm[5]);
        m = (int) dm;
        d2 = dm - .5;
        d2 *= d2;
        d1 = dm + dm;
        for (i = 2; i <= m; ++i) {
            dm -= 1.;
            d1 -= 2.;
            d2 -= d1;
            ratio = (d3 + d2) / (twox + d1 - ratio);
            blpha = (ratio + ratio * blpha) / dm;
        }
        bk1 = 1. / ((M_SQRT_2dPI + M_SQRT_2dPI * blpha) * sqrt(ex));
        if (*ize == 1)
            bk1 *= exp(-ex);
        wminf = estf[4] * (ex - fabs(ex - estf[6])) + estf[5];
        }
        /* ---------------------------------------------------------
           Calculation of K(ALPHA+1,X)
           from K(ALPHA,X) and  K(ALPHA+1,X)/K(ALPHA,X)
           --------------------------------------------------------- */
        bk2 = bk1 + bk1 * (nu + .5 - ratio) / ex;
    }
    /*--------------------------------------------------------------------
      Calculation of 'NCALC', K(ALPHA+I,X), I  =  0, 1, ... , NCALC-1,
      &   K(ALPHA+I,X)/K(ALPHA+I-1,X),  I = NCALC, NCALC+1, ... , NB-1
      -------------------------------------------------------------------*/
    *ncalc = *nb;
    bk[0] = bk1;
    if (iend == 0)
        return;

    j = 1 - k;
    if (j >= 0)
        bk[j] = bk2;

    if (iend == 1)
        return;

    m = min0((int) (wminf - nu),iend);
    for (i = 2; i <= m; ++i) {
        t1 = bk1;
        bk1 = bk2;
        twonu += 2.;
        if (ex < 1.) {
        if (bk1 >= DBL_MAX / twonu * ex)
            break;
        } else {
        if (bk1 / ex >= DBL_MAX / twonu)
            break;
        }
        bk2 = twonu / ex * bk1 + t1;
        ii = i;
        ++j;
        if (j >= 0) {
        bk[j] = bk2;
        }
    }

    m = ii;
    if (m == iend) {
        return;
    }
    ratio = bk2 / bk1;
    mplus1 = m + 1;
    *ncalc = -1;
    for (i = mplus1; i <= iend; ++i) {
        twonu += 2.;
        ratio = twonu / ex + 1./ratio;
        ++j;
        if (j >= 1) {
        bk[j] = ratio;
        } else {
        if (bk2 >= DBL_MAX / ratio)
            return;

        bk2 *= ratio;
        }
    }
    *ncalc = max0(1, mplus1 - k);
    if (*ncalc == 1)
        bk[0] = bk2;
    if (*nb == 1)
        return;

L420:
    for (i = *ncalc; i < *nb; ++i) { /* i == *ncalc */
#ifndef IEEE_754
        if (bk[i-1] >= DBL_MAX / bk[i])
        return;
#endif
        bk[i] *= bk[i-1];
        (*ncalc)++;
    }
    }
}