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Course objectives

In this short amount of time, I hope to provide:
1. simple changes to your current computing environment that yield

big computation gains

2. thoughts on selecting computing environments and software to
alleviate common bottlenecks

3. an applied glimpse under the hood at some lower-level code (C/C++
and FORTRAN) that can improve your higher-level code (e.g., R)

4. introduction to some lower- and higher-level coding tools and tips
for parallelization

Topics are generally motivated using geostatistical models applied to
settings where we have a lot of data.
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Modeling Univariate Spatial Data

September 18, 2019
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I Researchers in diverse areas such as ecology, forestry, climatology,
and environmental health, are increasingly faced with the task of
analyzing data that are:
I highly multivariate, with many important predictors and response

variables,

I geographically referenced, and often presented as maps, and

I temporally correlated, as in longitudinal or other time series
structures.

⇒ motivates hierarchical modeling and data analysis for complex
spatial (and spatiotemporal) data sets.
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I point-referenced data, where y(s) is a random vector at a location
s ∈ <r , where s varies continuously over D, a fixed subset of <r that
contains an r -dimensional rectangle of positive volume;

I areal data, where D is again a fixed subset (of regular or irregular
shape), but now partitioned into a finite number of areal units with
well-defined boundaries;

I point pattern data, where now D is itself random; its index set gives
the locations of random events that are the spatial point pattern.
y(s) itself can simply equal 1 for all s ∈ D (indicating occurrence of
the event), or possibly give some additional covariate information
(producing a marked point pattern process).
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Algorithmic Modeling

I Spatial surface observed at finite set of locations S = {s1, s2, ..., sn}
I Tessellate the spatial domain (usually with data locations as vertices)
I Fit an interpolating polynomial:

f (s) =
∑

i
wi (S; s)f (si )

I “Interpolate” by reading off f (s0).
I Includes: triangulation, weighted averages, geographically weighted

regression (GWR)
I Issues:

I Sensitivity to tessellations
I Choices of multivariate interpolators
I Numerical error analysis
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Simple linear model

y(s) = µ(s) + ε(s),

I Response: y(s) at location s
I Mean: µ = x(s)>β

I Error: ε(s) iid∼ N(0, τ 2)

D

y(s), x(s)
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Simple linear model

y(s) = µ(s) + ε(s),

Assumptions regarding ε(s):
I ε(s) iid∼ N(0, τ 2)

I ε(si ) and ε(sj) are uncorrelated for all i 6= j

D

ε(si )
ε(sj )
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Spatial Gaussian processes (GP):
I Say w(s) ∼ GP(0, σ2ρ(·)) and

Cov(w(s1),w(s2)) = σ2ρ (φ; ‖s1 − s2‖)

I Let w = [w(si )]ni=1, then

w ∼ N(0, σ2R(φ)), where R(φ) = [ρ(φ; ‖si − sj‖)]ni,j=1

D

w(si )
w(sj )
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Realization of a Gaussian process:
I Changing φ and holding σ2 = 1:

w ∼ N(0, σ2R(φ)), where
R(φ) = [ρ(φ; ‖si − sj‖)]ni,j=1

I Correlation model for R(φ):
e.g., exponential decay

ρ(φ; t) = exp(−φt) if t > 0.

I Other valid models e.g., Gaussian,
Spherical, Matérn.

I Effective range, t0 = −ln(0.05)/φ ≈ 3/φ
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w ∼ N(0, σ2R(φ)) provides complex spatial dependence through simple
structured dependence.

E.g., anisotropic Matérn correlation function:
ρ(si , sj ; φ) =

(
1/Γ(ν)2ν−1

) (
2
√
νdij )νκν(2

√
νdij
)

, where
dij = (si − sj )′ Σ−1 (si − sj ), Σ = G(ψ)Λ2G(ψ)′. Thus, φ = (ν, ψ,Λ).

Simulated Predicted
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Simple linear model + random spatial effects

y(s) = µ(s) + w(s) + ε(s),

I Response: y(s) at some site

I Mean: µ = x(s)>β

I Spatial random effects: w(s) ∼ GP(0, σ2ρ(φ; ‖s1 − s2‖))

I Non-spatial variance: ε(s) iid∼ N(0, τ 2). Interpretation as pure error,
measurement error, replication error, microscale error.
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Hierarchical modeling

I First stage:

y|β,w, τ 2 ∼
n∏

i=1
N(y(si ) | x(si )>β + w(si ), τ 2)

I Second stage:
w|σ2, φ ∼ N(0, σ2R(φ))

I Third stage: Priors on Ω = (β, τ 2, σ2, φ)
I Collapsed likelihood:

y|Ω ∼ N(Xβ, σ2R(φ) + τ 2I)

I Note: Spatial process parametrizes Σ:
y = Xβ + ε, ε ∼ N (0,Σ) , Σ = σ2R(φ) + τ 2I
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Bayesian Computations

I Choice: Fit [y|Ω]× [Ω] or [y|β,w, τ 2]× [w|σ2, φ]× [Ω].

I Conditional model:
I conjugate full conditionals for β, σ2, τ 2 and w – easier to program.

I Marginalized model:
I need Metropolis or Slice sampling for σ2, τ 2 and φ. Harder to

program.
I But, reduced parameter space ⇒ faster convergence
I σ2R(φ) + τ 2I is more stable than σ2R(φ).

I But what about R−1(φ) ?? EXPENSIVE!
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Where are the w’s?

I Interest often lies in the spatial surface w|y.

I They are recovered from

[w|y,X ] =
∫

[w|Ω, y,X ]× [Ω|y,X ]dΩ

using posterior samples:
I Obtain Ω(1), . . . ,Ω(G) ∼ [Ω|y,X]
I For each Ω(g), draw w(g) ∼ [w|Ω(g), y,X]

I NOTE: With Gaussian likelihoods [w|Ω, y,X] is also Gaussian. With
other likelihoods this may not be a standard distribution; conditional
updating scheme is preferred.

Scaling Problems in Statistics 2019



Where are the w’s?

I Interest often lies in the spatial surface w|y.

I They are recovered from

[w|y,X ] =
∫

[w|Ω, y,X ]× [Ω|y,X ]dΩ

using posterior samples:
I Obtain Ω(1), . . . ,Ω(G) ∼ [Ω|y,X]
I For each Ω(g), draw w(g) ∼ [w|Ω(g), y,X]

I NOTE: With Gaussian likelihoods [w|Ω, y,X] is also Gaussian. With
other likelihoods this may not be a standard distribution; conditional
updating scheme is preferred.

Scaling Problems in Statistics 2019



I Often we need to predict y(s) at a new set of locations {s̃0, . . . , s̃ñ}
with associated predictor matrix X̃.

I Sample from predictive distribution:

[ỹ|y,X, X̃] =
∫

[ỹ,Ω|y,X, X̃]dΩ

=
∫

[ỹ|y,Ω,X, X̃]× [Ω|y,X]dΩ,

[ỹ|y,Ω,X, X̃] is multivariate normal. Sampling scheme:
I Obtain Ω(1), . . . ,Ω(G) ∼ [Ω|y,X]
I For each Ω(g), draw ỹ(g) ∼ [ỹ|y,Ω(g),X, X̃].
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Calling C/C++ from R and Fun with OpenMP

September 19, 2019
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Our focus today

What we’re not doing

I developing an R package (see, e.g., official documentation
Writing R Extensions and Hadly Wickham R packages)

I learning C/C++, FORTRAN, R, or OpenMP
I taking a deep look at any one topic

What we are doing

I mentioning some topics that might get you thinking about how
to improve your code

I scratching the surface of some expansive topics in computing
I providing some code and ideas that might point you in the

right direction
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Why connect R and lower-level code
R is an interpreted language and, as a result, can be slow at

I vectorizing loops whose subsequent iterations depend on
previous iterations

I executing recursive functions

Also, we often want to use data structures, algorithms, and libraries
written in lower-level code (e.g., BLAS, LAPACK, CHOLMOD,
Eigen, GNU Scientific Library, etc.).

We could just write standalone code, but

I R is nice for input/output and other tasks in-between
I we might want to use some of R’s C functions, e.g., RNGs and

distributions in Rmath.h
I we might eventually write an R package
I simplifies in-house code sharing and teaching
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R Foreign Language Interfaces
The authoritative document is “Writing R Extensions” found at
https://cran.r-project.org.

We’ll focus on calling C/C++ for now (but calling FORTRAN and
JAVA is similar). There are three approaches for passing stuff
between R and C/C++.

1. .Call() designed for calling code that understands R objects
and environments. Allows multiple arguments to be passed to
C/C++ and R objects returned.

2. External() like .Call() but the C/C++ function is passed
a single argument containing a LISTSXP, a pairlist from which
the arguments can be extracted.

3. .C() (and .Fortran) designed to call code that does not
know about R. Straightforward, but limited types of arguments
and all checking of arguments must be done in R. No return
value, but may alter its arguments.
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Why not Rcpp?
There are some real advantages to using Rcpp

I Rcpp API (Application Programming Interface) “protects you
from many of the historical idiosyncrasies of the R
API”–Hadley Wickham

I takes care of memory management
I provides helper methods to working with R objects in C++
I many more advantages, see, e.g., http://www.rcpp.org/

Sounds good, so why use R’s API?

I preference to write standalone flexible C/C++ code, then with
slight modification can be called from R

I one fewer level of abstraction to deal with (and perhaps some
overhead)—feels closer to the metal

I it’s what I know well and how most R packages with source
code are written
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Moving between R and C/C++ types

Mapping between the modes of R atomic vectors and the types of
arguments to a C function or FORTRAN subroutine.

R storage mode C type FORTRAN type

logical int * INTEGER
integer int * INTEGER
double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char ** CHARACTER*255
raw unsigned char * none
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Getting started

Calling a C/C++ function from R requires two pieces: a C/C++
function and an R wrapper function that uses .Call().

Compile the C/C++ code and call from R as a shared object .so
(Linux or MacOS X) or as a .dll (Windows).

From within R load the compiled object using dyn.load() and
unload it using dyn.unload().
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Exercise #2

Let’s turn to Exercise 2 cIDist.R and cIDist.cpp files.
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Parallel computing with OpenMP

OpenMP is an industry standard API of C/C++ and FORTRAN for
shared memory parallel programming.

OpenMP is based on two concepts: the use of threads (think CPUs)
and the fork/join model of parallelism:

All threads have access to the same shared global memory. Each
thread has access to its private variables and common variables1.

1figure credit: www.nersc.gov
Scaling Problems in Statistics 2019
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Parallel computing with OpenMP

Some advantages

I high-level directives (pragma) used to define parallel regions
simplify coding and decisions

I parallelism can be added incrementally
I programs can be run sequentially if needed (e.g., if compilers

do not support OpenMP)
I compilers (or you) can optimize the number of threads needed

by parallel region

“With great power comes great responsibility”—Benjamin Parker
(a.k.a Uncle Ben)

You must be sure that what you are doing in parallel regions is
thread-safe—it’s very easy to make mistakes that compile without
error.
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Exercise #2 revisited

Consider Exercise 2 but now cIDistOMP.R and cIDistOMP.cpp
files.
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Code gone wrong (then right)
Let’s construct a spatial correlation matrix using the Matern
function such that the i , j-th element is equal to

R(θ)i ,j = 1
2ν−1Γ(ν)(di ,jφ)νKν(di ,jφ);φ > 0, ν 0, (1)

where θ = (φ, ν) with φ controlling the decay and ν controlling
smoothness, Γ is the Gamma function, and Kν is a modified Bessel
function of the second kind with order ν.
In R speak this is

(D*phi)^nu/(2^(nu-1)*gamma(nu))*besselK(x=D*phi, nu=nu)

and C using Rmath.h functions

pow(D[i]*phi, nu)/(pow(2, nu-1)*gammafn(nu)*
bessel_k(D[i]*phi, nu, 1.0)
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Exercise #3

Consider Exercise 3 but now cRMaternOMPWrong.cpp and
cRMaternOMPWrong.cpp files.
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Now making it thread-safe

The problem is that R’s bessel_k C function is not thread-safe.
Note the bk vector is allocated within bessel_k.c.

Instead use undocumented bessel_k_ex in bessel_k.c as
illustrated in cRMaternOMPSafe.cpp.

Here we:

I allocate enough working space for each thread outside the
parallel region

I use each thread’s id (i.e., 0, 1, . . . , nTheads− 1) via
omp_get_thread_num() to index the working space passed to
bessel_k_ex
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Efficient Implementation of Bayesian Hierarchical
Linear Models

September 18, 2019
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Bayesian hierarchical linear mixed model
p(θ)× N(β |µβ ,Σβ)× N(α | 0,K(θ))× N(y |Xβ + Z(θ)α,D(θ))

I y is an n × 1 vector of possibly irregularly located observations,
I X is a known n × p matrix of regressors (p < n),
I K(θ) and D(θ) are families of r × r and n × n covariance matrices,

respectively,
I Z(θ) is n × r with r ≤ n, all indexed by a set of unknown process

parameters θ.
I α is the r × 1 random vector and β is the p × 1 slope vector.

Space-varying intercept model is a special case where D(θ) = τ 2In,
α = (w(s1),w(s2), . . . ,w(sn))>, Z(θ) = In, and the n × n
K(θ) = σ2R(φ).
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For faster convergence, we integrate out β and α from the model and
first sample from

p(θ | y) ∝ p(θ)× N(y |Xµβ ,Σy | θ),

where Σy | θ = XΣβX> + Z(θ)K(θ)Z(θ)> + D(θ).

This involves evaluating

log p(θ | y) = const + log p(θ)− 1
2 log |Σy | θ| −

1
2Q(θ) ,

where Q(θ) = (y− Xµβ)>Σ−1
y | θ(y− Xµβ).

1. L = chol(Σy | θ), lower-triangular Cholesky factor L of Σy |θ
(O(n3/3) flops)

2. u = trsolve(L, y− Xµβ), solves Lu = y− Xµβ (O(n2) flops)
3. Q(θ) = u>u (2n flops)
4. log-determinant is 2

∑n
i=1 log lii , where lii are the diagonal entries in

L (n flops)
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log p(θ | y) = const + log p(θ)− 1
2 log |Σy | θ| −

1
2Q(θ) ,

where Q(θ) = (y− Xµβ)>Σ−1
y | θ(y− Xµβ).

1. L = chol(Σy | θ), lower-triangular Cholesky factor L of Σy |θ
(O(n3/3) flops)

2. u = trsolve(L, y− Xµβ), solves Lu = y− Xµβ (O(n2) flops)
3. Q(θ) = u>u (2n flops)
4. log-determinant is 2

∑n
i=1 log lii , where lii are the diagonal entries in

L (n flops)

Scaling Problems in Statistics 2019



Given marginal posterior samples θ from p(θ | y), we can draw posterior
samples of β and α using composition sampling.

We’ll consider a portion of this algorithm in a subsequent exercise.

For more details see Finley, A.O., S. Banerjee, A.E. Gelfand. (2015)
spBayes for large univariate and multivariate point-referenced
spatio-temporal data models. Journal of Statistical Software, 63:1–28.

Scaling Problems in Statistics 2019


	Overview
	Introduction to spatial data and models
	Type of spatial data

	Point-referenced spatial models
	Simple linear model
	Sources of variation
	Univariate spatial regression
	Spatial Prediction

	Efficient sampler computing

