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Abstract

In this paper we detail the reformulation and rewrite of core functions in the spBayes R
package. These efforts have focused on improving computational efficiency, flexibility, and
usability for point-referenced data models. Attention is given to algorithm and computing
developments that result in improved sampler convergence rate and efficiency by reducing
parameter space; decreased sampler run-time by avoiding expensive matrix computations,
and; increased scalability to large datasets by implementing a class of predictive process
models that attempt to overcome computational hurdles by representing spatial processes
in terms of lower-dimensional realizations. Beyond these general computational improve-
ments for existing model functions, we detail new functions for modeling data indexed in
both space and time. These new functions implement a class of dynamic spatio-temporal
models for settings where space is viewed as continuous and time is taken as discrete.

Keywords: spatial, temporal, multivariate, Gaussian predictive process, Markov chain Monte
Carlo.

1. Introduction

The scientific community is moving into an era where open-access data-rich environments
provide extraordinary opportunities to understand the spatial and temporal complexity of
processes at broad scales. Unprecedented access to spatial data is a result of investments to
collect data for regulatory, monitoring, and resource management objectives, and technologi-
cal advances in spatially-enabled sensor networks along with geospatial information storage,
analysis, and distribution systems. These data sources are increasingly diverse and special-
ized, e.g., computer model outputs, monitoring station instruments, remotely located sensors,
and georeferenced field measurements. Across scientific fields, researchers face the challenge
of coupling these data with imperfect models to better understand variability in their system
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of interest. The inference garnered through these analyses often supports decisions with im-
portant economic, environmental, and public health implications; therefore, it is critical to
correctly estimate inferential uncertainty. However, developing modeling frameworks capa-
ble of accounting for various sources of uncertainty is not a trivial task – massive datasets
from multiple sources with complex spatial dependence structures only serve to aggravate the
challenges.

Proliferation of spatial data has spurred considerable development in statistical modeling; see,
for example, the books by Cressie (1993), Chilès and Delfiner (2012), Møller and Waagepetersen
(2003), Schabenberger and Gotway (2004), Wackernagel (2003), Diggle and Ribeiro (2007)
and Cressie and Wikle (2011) for a variety of methods and applications. The statistical lit-
erature acknowledges that spatial and temporal associations are captured most effectively
using models that build dependencies in different stages or hierarchies. Hierarchical models
are especially advantageous with datasets having several lurking sources of uncertainty and
dependence, where they can estimate much richer models with less stringent assumptions
than traditional modeling paradigms. These models often follow the Bayesian framework of
statistical inference (see, e.g., Carlin and Louis 2011; Gelman, Carlin, Stern, and Rubin 2004),
where analysis uses sampling from the posterior distributions of model parameters.

Computational advances with regard to Markov chain Monte Carlo (MCMC) methods have
contributed enormously to the popularity of hierarchical models in a wide array of disciplines
(e.g., Gilks, Richardson, and Spiegelhalter 1996; Robert and Casella 2004), and spatial mod-
eling is no exception (see, e.g., Banerjee, Carlin, and Gelfand 2004). In the realm of spatial
statistics, hierarchical models have been widely applied to analyze both areally referenced
as well as point-referenced or geostatistical data. For the former, a class of models known
as conditionally autoregressive (CAR) models have become very popular as they are easily
implemented using MCMC methods such as the Gibbs sampler. In fact, these models are
somewhat naturally suited for the Gibbs sampler which draws samples from conditional dis-
tributions that are fully specified by the CAR models. Their popularity has increased in no
small measure due to their automated implementation in the OpenBUGS software package
(Thomas, O Hara, Ligges, and Sturtz 2006) which offers a flexible and user-friendly interface
to construct multilevel models that are implemented using a Gibbs sampler. This is performed
by identifying a multilevel model with a directed acyclic graph (DAG) whose nodes form the
different components of the model and allow the language to identify the full conditional
distributions that need to be updated. OpenBUGS is an offshoot of the BUGS (Bayesian
inference Using Gibbs Sampling) project and the successor of the WinBUGS software (Lunn,
Spiegelhalter, Thomas, and Best 2009).

From an automated implementation perspective, the challenges are somewhat greater for
point-referenced models. First, expensive matrix computations are required that can become
prohibitive with large datasets. Second, routines to fit unmarginalized models are less suited
for direct updating using a Gibbs sampler in the BUGS paradigm and results in slower conver-
gence of the chains. Third, investigators often encounter multivariate spatial datasets with
several spatially dependent outcomes, whose analysis requires multivariate spatial models
that involve matrix computations that are poorly implemented in BUGS. These issues have,
however, started to wane with the delivery of relatively simpler R (R Core Team 2014) pack-
ages via the Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/)
that help automate Bayesian methods for point-referenced data and diagnose convergence.
The Analysis of Spatial Data (Bivand 2014) and Handling and Analyzing Spatio-Temporal
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Data (Pebesma 2014) CRAN task views provide a convenient way to identify packages that
offer functions for modeling such data. These packages are generally listed under the Geo-
statisics section in the task views. Here, those packages that fit Bayesian models include
geoR (Ribeiro and Diggle 2001), geoRglm (Christensen and Ribeiro 2002), spTimer (Bakar
and Sahu 2015), spBayes (Finley and Banerjee 2013), spate (Sigrist, Kuensch, and Stahel
2015), and ramps (Smith, Yan, and Cowles 2008). In terms of functionality, spBayes offers
users a suite of Bayesian hierarchical models for Gaussian and non-Gaussian univariate and
multivariate spatial data as well as dynamic Bayesian spatial-temporal models.

Our initial development of spBayes (Finley, Banerjee, and Carlin 2007) provided functions
for modeling Gaussian and non-Gaussian univariate and multivariate point-referenced data.
These hierarchical Bayesian spatial process models, implemented through MCMC methods,
offered increased flexibility to fit models that would be infeasible with classical methods
within inappropriate asymptotic paradigms. However, with this increased flexibility comes
substantial computational demands. Estimating these models involves expensive matrix de-
compositions whose computational complexity increases in cubic order with the number of
spatial locations, rendering such models infeasible for large spatial datasets. Through spBayes
version 0.2-4, released on CRAN on 2012-04-24, very little attention was given to addressing
these computational challenges. As a result, fitting models with more than a few hundred
observations was very time consuming – on the order of hours to fit models with ∼1,000
locations.

spBayes version 0.3-7 (CRAN 2013-06-01) comprises a substantial reformulation and rewrite
of core functions for model fitting, with a focus on improving computational efficiency, flex-
ibility, and usability. Among other improvements, this and subsequent versions offer: i)
improved sampler convergence rate and efficiency by reducing parameter space; ii) decreased
sampler run-time by avoiding expensive matrix computations, and; iii) increased scalability to
large datasets by implementing a class of predictive process models that attempt to overcome
computational hurdles by representing spatial processes in terms of lower-dimensional realiza-
tions. Beyond these general computational improvements for existing models, new functions
were added to model data indexed in both space and time. These functions implement a
class of dynamic spatio-temporal models for settings where space is viewed as continuous and
time is taken as discrete. The subsequent sections highlight the fundamentals of models now
implemented in spBayes.

2. Bayesian Gaussian spatial regression models

Finley et al. (2007) outline the first version of spBayes as an R package for estimating Bayesian
spatial regression models for point-referenced outcomes arising from Gaussian, binomial or
Poisson distributions. For the Gaussian case, the recent version of spBayes offers several
Bayesian spatial models emerging from the hierarchical linear mixed model framework

p(θ)×N(β |µβ,Σβ)×N(α |0,K(θ))×N(y |Xβ +Z(θ)α,D(θ)) , (1)

where y is an n × 1 vector of possibly irregularly located observations, X is a known n × p
matrix of regressors (p < n),K(θ) andD(θ) are families of r×r and n×n covariance matrices,
respectively, and Z(θ) is n×r with r ≤ n, all indexed by a set of unknown process parameters
θ. The r×1 random vector α ∼ N(0,K(θ)) and the p×1 slope vector β ∼ N(µβ,Σβ), where
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µβ and Σβ are known. The hierarchy is completed by assuming θ ∼ p(θ), a proper prior
distribution. The Gaussian spatial models in spBayes emerge as special cases of (1), which we
will see later. Bayesian inference is carried out by sampling from the posterior distribution of
{β,α,θ}, which is proportional to (1).

Below, we provide some details behind Bayesian inference for (1). This involves sampling the
parameters θ, β andα from their marginal posterior distributions and carrying out subsequent
predictions. Direct computations usually entail inverting and multiplying dense matrices and
also computing determinants. In software development, care is needed to avoid redundant
operations and ensure numerical stability. Therefore, in the subsequent sections we describe
how we use Cholesky factorizations, solve triangular systems, and minimize expensive matrix
operations (e.g., dense matrix multiplications) to perform all the computations.

2.1. Sampling the process parameters

Sampling from (1) employs MCMC methods, in particular Gibbs sampling and random walk
Metropolis steps (e.g., Robert and Casella 2004). For faster convergence, we integrate out
β and α from the model and first sample from p(θ |y) ∝ p(θ) × N(y |Xµβ,Σy | θ), where

Σy | θ = XΣβX
> +Z(θ)K(θ)Z(θ)> +D(θ). This matrix needs to be constructed for every

update of θ. Usually D(θ) is diagonal and XΣβX
> is fixed, so the computation involves the

matrix Z(θ)K(θ)Z(θ)>. Assuming that Z(θ) and K(θ) are computationally inexpensive to
construct for each θ, Z(θ)K(θ)Z(θ)> requires rn2 flops (floating point operations).

We adopt a random-walk Metropolis step with a multivariate normal proposal (same dimen-
sion as there are parameters in θ) after transforming parameters to have support over the
entire real line. This involves evaluating

log p(θ |y) = const + log p(θ)− 1

2
log |Σy | θ| −

1

2
Q(θ) , (2)

where Q(θ) = (y −Xµβ)>Σ−1y | θ(y −Xµβ). Generally, we compute L = chol(Σy | θ), where

chol(Σy | θ) returns the lower-triangular Cholesky factor L of Σy |θ. This involves O(n3/3)
flops. Next, we obtain u = trsolve(L,y −Xµβ), which solves the triangular system Lu =

y −Xµβ. This involves O(n2) flops and Q(θ) = u>u requires another 2n flops. The log-
determinant in (2) is evaluated as 2

∑n
i=1 log lii, where lii are the diagonal entries in L. Since

L has already been obtained, the log-determinant requires another n steps. Therefore, the
Cholesky factorization dominates the work and computing (2) is achieved in O(n3) flops.

If β is flat, i.e., Σ−1β = O, the analogue of distribution (2) is

log p(θ |y) = constant + log p(θ)− 1

2
log |X>Σy |β,θX| −

1

2
log |Σy |β,θ| −

1

2
Q(θ), (3)

where Σy |β,θ = Z(θ)K(θ)Z(θ)> + D(θ) and Q(θ) = y>Σ−1y |β,θy − b
>(X>Σ−1y |β,θX)−1b

and b = X>Σ−1y |β,θy. Computations proceed similar to the above. We first evaluate L =

chol(Σy |β,θ) and then obtain [v : U ] = trsolve(L, [y : X]), so Lv = y and LU = X.

Next, we evaluate W = chol(U>U), b = U>v and solve b̃ = trsolve(W , b). Finally, (3) is
evaluated as

log p(θ)−
p∑
i=1

logwi,i −
n∑
i=1

li,i −
1

2
(v>v − b̃>b̃),
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where wi,i’s and lii’s are the diagonal elements in W and L respectively. The number of flops
is again of cubic order in n.

Importantly, our strategy above avoids computing inverses. We use Cholesky factorizations
and solve only triangular systems. If n is not large, say ∼102, this strategy is feasible. The
use of efficient numerical linear algebra routines fetch substantial reduction in computing time
(see Section 3). Our implementation employs matrix-vector multiplication and avoids dense
matrix-matrix multiplications wherever possible. Multiplications involving diagonal matrices
are programmed using closed form expressions and inverses are obtained by solving triangular
linear systems after obtaining a Cholesky decomposition. However, when n ∼ 103 or higher,
the computation becomes too onerous for practical use and alternative updating strategies
are required. We address this in Section 2.3

2.2. Sampling the slope and the random effects

Once we have obtained marginal posterior samples θ from p(θ |y), we can draw posterior
samples of β and α using composition sampling. Suppose {θ(1),θ(2), . . . ,θ(M)} are M samples
from p(θ |y). Drawing β(k) ∼ p(β |θ(k),y) and α(k) ∼ p(α |θ(k),y) for k = 1, 2, . . .M results
in M samples from p(β |y) and p(α |y) respectively. Only the samples of θ obtained after
convergence (i.e., post burn-in) of the MCMC algorithm need to be stored.

To elucidate further, note that β |θ,y ∼ Np(Bb,B) with mean Bb and variance-covariance
matrix B, where

b = Σ−1β µβ +X>Σ−1y |β,θy and B =
(
Σ−1β +X>Σ−1y |β,θX

)−1
. (4)

For each k = 1, 2, . . . ,M , we compute B and b at the current value θ(k) and draw β(k) ∼
Np(Bb,B). This is achieved by computing b = Σ−1β µβ + U>v, where L = chol(Σy |β,θ(k))
and [v : U ] = trsolve(L, [y : X]). Next, we generate p independent standard normal
variables, collect them into z and set

β(k) = trsolve
(
L>B, trsolve(LB, b)

)
+ trsolve(L>B, z) , (5)

where LB = chol
(
Σ−1β +U>U

)
. This completes the k-th iteration. After M iterations, we

obtain {β(1),β(2), . . . ,β(M)}, which are samples from p(β |y).

Mapping point or interval estimates of spatial random effects is often helpful in identifying
missing regressors and/or building a better understanding of model adequacy. Σy |α,θ =

XΣβX
> +D(θ) and note that α |θ,y ∼ N(Bb,B), where

b = Z(θ)>Σ−1y |α,θ(y −Xµβ) and B =
(
K(θ)−1 +Z(θ)>Σ−1y |α,θZ(θ)

)−1
. (6)

The vector b here is computed analogously as for β. For each k = 1, 2, . . . ,M we now evaluate
L = chol(Σy |α,θ(k)), [v : U ] = trsolve(L, [y −Xµβ : Z(θ(k))]) and set b = U(θ(k))>v.
For computing B, one could proceed as for β but that would involve chol(K(θ)), which
may become numerically unstable for certain covariance functions (e.g., the Gaussian or the
Matérn with large ν). For robust software performance we define G(θ)−1 = Z(θ)′Σ−1y |α,θZ(θ)

and utilize the identity (Henderson and Searle 1981)(
K(θ)−1 +G(θ)−1

)−1
= G(θ)−G(θ) (K(θ) +G(θ))−1G(θ)
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to devise a numerically stable algorithm. For each k = 1, 2, . . . ,M , we evaluate L =
chol(K(θ(k))+G(θ(k))), W = trsolve(L,G(θ(k))) and LB = chol(G(θ)(k)−W>W ). If z
is a r×1 vector of independent standard normal variables, then we set α(k) = LBL

>
Bb+LBz.

The resulting {α(1),α(2), . . . ,α(M)} are samples from p(α |y).

We remark that estimating the spatial effects involves Cholesky factorizations for n× n pos-
itive definite linear system. The above steps ensure numerical stability but they can become
computationally prohibitive when n becomes large. While some savings accrue from execut-
ing the above steps only for the post burn-in samples, for n in the order of thousands we
recommend the low rank spatial models offered by spBayes (see Sections 2.3 and 4.2).

2.3. The special case of low-rank models

The major computational load in estimating (1) arises from unavoidable Cholesky decomposi-
tions for dense n×n positive definite matrices. The required number of flops is of cubic order
and must be executed in each iteration of the MCMC. For example, when a specific form of
(1) is used to analyze a dataset comprising n = 2, 000 locations and p = 2 predictors, each
iteration requires ∼0.3 seconds of CPU time (see Section 4.2.1). Marginalization, as described
in Section 2.1, typically require fewer iterations to converge. But even if 10, 000 iterations are
required to deliver full inferential output, the associated CPU time is ∼50 minutes. Clearly,
large spatial datasets demand specialized models.

One strategy is to specify Z(θ) with r � n. Such models are known as low-rank models.
Specific choices for Z(θ) will be discussed later – spBayes models Z(θ) using the predictive
process (see Section 4.2). To understand how savings accrue in low-rank models, consider the
marginal Gaussian likelihood obtained by integrating out α from (1)

p(θ)×N(β |µβ,Σβ)×N(y |Xβ,Σy |β,θ) ,

where Σy |β,θ = Z(θ)K(θ)Z(θ)> + D(θ). We could have integrated out β too, as in Sec-
tion 2.1, but this does not result in an appreciable gain in computational efficiency. For
the low-rank model, each iteration of the Gibbs sampler updates β and θ from their full
conditional distributions.

The β is drawn from N(Bb,B), where b and B are as in (4). The strategy in Section 2.2
would be expensive for large n because computing B, though itself p× p, involves a Cholesky
factorization of the n × n matrix Σy |β,θ for every new update of θ. Instead, we utilize the
Sherman-Woodbury-Morrison formula

Σ−1y |β,θ = D(θ)−1 −D(θ)−1Z(θ)
(
K(θ)−1 +Z(θ)>D(θ)−1Z(θ)

)
Z(θ)>D(θ)−1

= D(θ)−1/2
(
I −H>H

)
D(θ)−1/2 , (7)

where H = trsolve(L,W>), W = D(θ)−1/2Z(θ) and L = chol(K(θ)−1 +W>W ). Next,
we compute [v : V ] = D−1/2[y : X], Ṽ = HV and set

b = Σ−1β µβ + V >y − Ṽ >Hv and LB = chol(Σ−1β + V >V − Ṽ >Ṽ ) . (8)

We perform the above operations for each iteration in the Gibbs sampler, using the current
update of θ, and sample the β as in (5).
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We update process parameters θ using a random-walk Metropolis step with target log-density

log p(θ |y) = const. + log p(θ)− 1

2
log |Σy |β,θ| −

1

2
Q(θ) , (9)

where Q(θ) = (y −Xβ)>Σ−1y |β,θ(y −Xβ). Having obtained H as above, we evaluate v =

D(θ)−1/2(y −Xβ), w = Hv, T = chol(Ir −HH>) and compute (9) as

log p(θ)− 1

2

n∑
i=1

log di,i(θ) +
n∗∑
i=1

log ti,i −
1

2
(v>v −w>w) ,

where dii(θ) and tii are the diagonal entries of D(θ) and T respectively.

Once the Gibbs sampler has converged and we have obtained posterior samples for β and
θ, obtaining posterior samples for α can be achieved following closely the description in
Section 2.2. In fact, since the posterior samples of β are already available, we can draw α
from its full-conditional distribution, given both β and θ. This amounts to replacing µβ with
β and Σy |α,θ with D(θ) in (6). The algorithm now proceeds exactly as in Section 2.2 and
we achieve computational savings as D(θ) is usually cheaper to handle than Σy |α,θ.

2.4. Spatial predictions

To predict a random t × 1 vector y0 associated with a t × p matrix of predictors, X0, we
assume that [

y
y0

] ∣∣∣∣β,θ ∼ Nt+n

([
X
X0

]
β,

[
C11(θ) C12(θ)
C12(θ)> C22(θ)

])
, (10)

where C11(θ) = Σy |β,θ, C12(θ) is the n × t cross-covariance matrix between y and y0, and
C22(θ) is the variance-covariance matrix for y0. How these are constructed is crucial for en-
suring a legal probability distribution or, equivalently, a positive-definite variance-covariance
matrix for (y>,y>0 )> in (10). A legitimate joint distribution will supply a conditional distri-
bution p(y0 |y,β,θ), which is normal with mean and variance

µp = X0β +C12(θ)>C11(θ)−1(y −Xβ) (11)

Σp = C22(θ)−C12(θ)>C11(θ)−1C12(θ)

Bayesian prediction proceeds by sampling from the posterior predictive distribution p(y0 |y) =∫
p(y0 |y,β,θ)p(β,θ |y)dβdθ. For each posterior sample of {β,θ}, we draw a corresponding

y0 ∼ N(µp,Σp). This produces samples from the posterior predictive distribution.

Observe that the posterior predictive computations involve only the retained MCMC samples
after convergence. Furthermore, most of the ingredients to compute µp and Σp have already

been performed while updating the model parameters. For any posterior sample {β(k),θ(k)},
we solve [u : V ] = trsolve(L, [y −Xβ(k) : C12(θ

(k))]), where L = chol(C11(θ
(k))). Next,

we set µ
(k)
p = X0β

(k) + V >u and Σ
(k)
p = C22(θ

(k))− V >V and draw y
(k)
0 ∼ N(µ

(k)
p ,Σ

(k)
p ).

Low-rank models, where r � n, are again cheaper here. The operations are dominated
by the computation of C12(θ)>C11(θ)−1C12(θ), which can be evaluated as U>U − V >V ,
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where U = D(θ)−1/2C12(θ), V = HU and H is as in (7). This avoids direct evaluation of
C11(θ)−1 and avoids redundant matrix operations.

Updating y
(k)
0 ’s requires Cholesky factorization of Σp, which is t× t and can be expensive if

t is large. In most practical settings, it is sufficient to take t = 1 and perform independent
individual predictions. However, if the joint predictive distribution is sought, say when full
inference is desired for a function of y0, then the predictive step is significantly cheaper if we
use the posterior samples of α as well. Now posterior predictive sampling amounts to drawing

y
(k)
0 ∼ N(X0β

(k)+Z(θ(k))α(k),D(θ(k))), which cheap becauseD(θ) is usually diagonal. Low
rank models are especially useful here as posterior sampling for α is much cheaper with r � n.

3. Computing environment

The MCMC algorithms described in the preceding sections are implemented in spBayes func-
tions. These functions are written in C++ and leverage R’s Foreign Language Interface to call
Fortran BLAS (Basic Linear Algebra Subprograms, see Blackford et al. 2001) and LAPACK
(Linear Algebra Package, see Anderson et al. 1999) libraries for efficient matrix computations.
Table 1 offers a list of key BLAS and LAPACK functions used to implement the MCMC sam-
plers. Referring to Table 1 and following from Section 2.1, chol corresponds to dpotrf and
trsolve can be either dtrsv or dtrsm depending on the form of the equation’s right-hand
side. As noted previously, we try and use dense matrix-matrix multiplication, i.e., calls to
dgemm, sparingly due to its computational overhead. Often careful formulation of the problem
can result in fewer calls to dgemm and other expensive BLAS level 3 and LAPACK functions.

A heavy reliance on BLAS and LAPACK functions for matrix operations allows us to lever-
age multi-processor/core machines via threaded implementations of BLAS and LAPACK,
e.g., Intel’s Math Kernel Library (MKL; Intel 2013). With the exception of dtrsv, all func-
tions in Table 1 are threaded in Intel’s MKL. Use of MKL, or similar threaded libraries,
can dramatically reduce sampler run-times. For example, the illustrative analyses offered in
subsequent sections were conducted using R, and hence spBayes, compiled with MKL on
an Intel Ivy Bridge i7 quad-core processor with hyperthreading. The use of these parallel
matrix operations results in a near linear speadup in the MCMC sampler’s run-time with
the number of CPUs – at least 4 CPUs were in use in each function call. The R Installation
and Administration document details how to compile R against MKL and similar threaded
libraries.

Function Description

dpotrf LAPACK routine to compute the Cholesky factorization of a real symmetric
positive definite matrix.

dtrsv Level 2 BLAS routine to solve the systems of equations Ax = b, where x and
b are vectors and A is a triangular matrix.

dtrsm Level 3 BLAS routine to solve the matrix equations AX = B, where X and B
are matrices and A is a triangular matrix.

dgemv Level 2 BLAS matrix-vector multiplication.
dgemm Level 3 BLAS matrix-matrix multiplication.

Table 1: Common BLAS and LAPACK functions used in spBayes function calls.
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spBayes also depends on several R packages including: coda (Plummer, Best, Cowles, and
Vines 2006) for casting the MCMC chain results as coda objects for easier posterior analysis;
abind (Plate and Heiberger 2013) and magic (Hankin 2013) for forming multivariate matrices,
and; Formula (Zeileis and Croissant 2010) for interpreting symbolic model formulas.

4. Models offered by spBayes

All the models offered by spBayes emerge as special instances of (1). The matrix D(θ) is
always taken to be diagonal or block-diagonal (for multivariate models). The spatial random
effects α are assumed to arise from a partial realization of a spatial process and the spatial
covariance matrix K(θ) is constructed from the covariance function specifying that spatial
process. To be precise, if {w(s) : s ∈ <d} is a Gaussian spatial process with positive definite
covariance function C(s, t;θ) (see, e.g., Bochner 1955) and if {s1, s2, . . . , sr} is a set of any r
locations in D, then α = (w(s1), w(s2), . . . , w(sr))

> and K(θ) is its r× r covariance matrix.

4.1. Full rank univariate Gaussian spatial regression

For Gaussian outcomes, geostatistical models customarily regress a spatially referenced de-
pendent variable, say y(s), on a p× 1 vector of spatially referenced predictors x(s) (with an
intercept) as

y (s) = x (s)> β + w (s) + ε (s) , (12)

where s ∈ D ⊆ <2 is a location. The residual comprises a spatial process, w(s), and an inde-
pendent white-noise process, ε(s), that captures measurement error or micro-scale variation.
With any collection of n locations, say S = {s1, . . . , sn}, we assume the independent and
identically distributed ε(si)’s follow a Normal distribution N(0, τ2), where τ2 is called the
nugget. The w(si)’s provide local adjustment (with structured dependence) to the mean and
capturing the effect of unmeasured or unobserved regressors with spatial pattern.

Customarily, one assumes stationarity, which means that C(s, t) = C(s− t) is a function of
the separation of sites only. Isotropy goes further and specifies C(s, t) = C(‖s − t‖), where
‖s − t‖ is the Euclidean distance between the sites s and t. We further specify C(s, t) =
σ2ρ(s, t;φ) in terms of spatial process parameters, where ρ(·;φ) is a correlation function while
φ includes parameters quantifying rate of correlation decay and smoothness of the surface
w(s). Var(w(s)) = σ2 represents a spatial variance component. Apart from the exponential,
ρ(s, t;φ) = exp(−φ‖s−t‖), and the powered exponential family, ρ(s, t;φ) = exp(−φ‖s−t‖α),
spBayes also offers users the Matérn correlation function

ρ(‖s− t‖;φ) =
1

2ν−1Γ(ν)
(‖s− t‖φ)νKν(‖s− t‖φ); φ > 0, ν > 0. (13)

Here φ = {φ, ν} with φ controlling the decay in spatial correlation and ν controlling process
smoothness. Specifically, if ν lies between positive integers m and (m + 1), then the spatial
process w(s) is mean-square differentiable m times, but not m+ 1 times. Also, Γ is the usual
Gamma function while Kν is a modified Bessel function of the second kind with order ν.

The hierarchical model built from (12) emerges as a special case of (1), where y is n× 1 with
entries y(si), X is n × p with x(si)

> as its rows, α is n × 1 with entries w(si), Z(θ) = In,
K(θ) is n× n with entries C(si, sj ;θ) and D(θ) = τ2In. We denote by θ the set of process
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parameters in K(θ) and D(θ). Therefore, with the Matérn covariance function in (13), we
define θ = {σ2, φ, ν, τ2}.

Example

The marginalized specification of (12) is implemented in the spLM function. The primary
output of this function is posterior samples of θ. As detailed in the preceding sections,
sampling is conducted using a Metropolis algorithm. Hence, users must specify Metropolis
proposal variances, i.e., tuning values, and monitor acceptance rates for these parameters.
Alternately, an adaptive MCMC Metropolis-within-Gibbs algorithm, proposed by Roberts
and Rosenthal (2009), is available for a more automated function call.

A key advantage of the first stage Gaussian model is that samples from the posterior distri-
bution of β and w can be recovered in a posterior predictive fashion, given samples of θ. In
practice we often choose to only use a subset of post burn-in θ samples to collect correspond-
ing samples of β and w. This composition sampling, detailed in Section 2.2, is conducted by
passing a spLM object to the spRecover function.

An analysis of a synthetic dataset serves to illustrate use of the spLM and spRecover functions.
The data are formed by drawing 200 observations from (12) within a unit square domain. The
model mean includes an intercept and covariate with associated coefficients β0 = 1 and β1 = 5,
respectively. Model residuals are generated using an exponential spatial correlation function,
with τ2 = 1, σ2 = 2 and φ = 6. This choice of φ corresponds to an effective spatial range of
0.5 distance units. For our purposes, the effective spatial range is the distance at which the
correlation equals 0.05. Figure 1(a) provides a surface plot of the observed spatial random
effects along with the location of the 200 observations.

All spLM function arguments, and those of others functions highlighted in this paper, are
defined in the package manual available on CRAN. Here we illustrate only some of the pos-
sible argument specifications. In addition to a symbolic model statement, the spLM function
requires the user to specify: i) the number of MCMC samples to collect; ii) prior distribution,
with associated hyperpriors for each parameter; iii) starting values for each parameter, and;
iv) tuning values for each parameter, unless the adaptive MCMC option is chosen via the
amcmc argument.

For this analysis, we assume an inverse-Gamma (IG) distribution for the variance parameters,
τ2 and σ2. These distributions are assigned shape and scale hyperpriors equal to 2 and 1,
respectively. With a shape of 2, the mean of the IG is equal to the scale and the variance
is infinite. In practice, the choice of the scale value can be guided by exploratory data
analysis using a variogram or similar tools that provide estimates of the spatial and non-
spatial variances. The spatial decay parameter φ is assigned a uniform (U) prior with support
that covers the extent of the domain. Here, we assume φ lies in the interval between 0.1 to 1 in
distance units, i.e., working from our definition of the effective spatial range this corresponds
to the prior U(−log(0.05)/1,−log(0.05)/0.1). In the code below, we define these priors along
with the other necessary arguments that are passed to spLM. The resulting posterior samples of
θ are summarized using the coda package’s summary function and each parameter’s posterior
distribution median and 95% credible interval (CI) is printed.

R> n.samples <- 5000

R> starting <- list("tau.sq" = 1, "sigma.sq" = 1, "phi" = 6)

R> tuning <- list("tau.sq" = 0.01, "sigma.sq" = 0.01, "phi" = 0.1)
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R> priors <- list("beta.Flat", "tau.sq.IG" = c(2, 1),

+ "sigma.sq.IG" = c(2, 1), "phi.Unif" = c(3, 30))

R> m.i <- spLM(y ~ X - 1, coords = coords, starting = starting,

+ tuning = tuning, priors = priors, cov.model = "exponential",

+ n.samples = n.samples, n.report = 2500)

----------------------------------------

General model description

----------------------------------------

Model fit with 200 observations.

Number of covariates 2 (including intercept if specified).

Using the exponential spatial correlation model.

Number of MCMC samples 5000.

Priors and hyperpriors:

beta flat.

sigma.sq IG hyperpriors shape=2.00000 and scale=1.00000

tau.sq IG hyperpriors shape=2.00000 and scale=1.00000

phi Unif hyperpriors a=3.00000 and b=30.00000

-------------------------------------------------

Sampling

-------------------------------------------------

Sampled: 2500 of 5000, 50.00%

Report interval Metrop. Acceptance rate: 66.12%

Overall Metrop. Acceptance rate: 66.12%

-------------------------------------------------

Sampled: 5000 of 5000, 100.00%

Report interval Metrop. Acceptance rate: 64.80%

Overall Metrop. Acceptance rate: 65.46%

-------------------------------------------------

R> burn.in <- floor(0.75 * n.samples)

R> round(summary(window(m.i$p.theta.samples,

+ start = burn.in))$quantiles[, c(3, 1, 5)], 2)

50% 2.5% 97.5%

sigma.sq 2.66 1.56 6.78

tau.sq 0.85 0.43 1.28

phi 7.17 3.01 14.94

Samples from the posterior distribution of β andw are then obtained by calling the spRecover
function as illustrates in the code below. The samples are again returned as a mcmc object
that can be summarized accordingly.

R> m.i <- spRecover(m.i, start = burn.in, thin = 5, n.report = 100)

-------------------------------------------------

Recovering beta and w



12 spBayes for Point-Referenced Spatio-Temporal Data Models

Figure 1: Interpolated surface of the observed (a) and estimated (b) spatial random effects.

-------------------------------------------------

Sampled: 99 of 251, 39.44%

Sampled: 199 of 251, 79.28%

R> round(summary(m.i$p.beta.recover.samples)$quantiles[, c(3,1,5)], 2)

50% 2.5% 97.5%

X1 0.71 -0.78 1.77

X2 4.96 4.79 5.17

In practice, it is often useful to pass the mean or median of each location’s spatial random
effect distribution through an interpolator to generate a surface plot. These surface estimates
can be created using the mba.surf function available in the MBA (Finley and Banerjee 2010)
package and plotted using the image or image.plot functions from the base graphics and
fields (Nychka, Furrer, and Sain 2013) packages, respectively. Such a surface is presented
in Figure 1(b) and matches closely the one depicting the synthetic data random effects in
Figure 1(a).

R> w.hat <- apply(m.i$p.w.recover.samples, 1, median)

R> w.hat.surf <- mba.surf(cbind(coords, w.hat), no.X = res, no.Y = res,

+ extend = TRUE)$xyz.est

R> par(mar = c(5,5,0.2,0.2), cex.lab = 2, cex.axis = 2)

R> image.plot(w.hat.surf, xlab = "Easting", ylab = "Northing", xaxs = "r",

+ yaxs = "r", col = col)

As discussed in Section 1, reducing computing time was a key objective in reformulating and
rewriting functions in spBayes. This same analysis conduced using the previous implementa-
tion of spLM, in version 0.2-4, required ∼8 minutes to generate 5, 000 MCMC samples of θ.
The previous implementation updated β from its full conditional distribution in each MCMC
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iteration and sampled θ using a Metropolis algorithm that did not take advantage of trian-
gular solvers and other efficient computational approaches detailed in the preceding sections.
For comparison, the current version of spLM generates the same number of samples in 0.031
minutes.

4.2. Low-rank predictive process models

spBayes offers low-rank models that allow the user to choose and fix r � n within a hier-
archical linear mixed model framework such as (1). Given the same modeling scenario as in
Section 4.1, the user chooses r locations, say S∗ = {s∗1, s∗2, . . . , s∗r}, and defines the process

w̃(s) = E[w(s) |w(s∗i ), i = 1, 2, . . . , r] . (14)

Banerjee, Gelfand, Finley, and Sang (2008) call w̃(s) the predictive process. Replacing w(s)
with w̃(s) in (12) yields the predictive process counterpart of the univariate Gaussian spatial
regression model.

The predictive process produces a low-rank model and can be cast into (1). For example, if
we take α to the r × 1 random vector with w(s∗i ) as its entries, then the predictive process
counterpart of (12) is obtained from (1) with D(θ) = τ2I, K(θ) = C∗(θ) and Z(θ) =
C(θ)>C∗(θ)−1, where C(θ)> is n × r whose entries are the covariances between w(si)’s and
w(s∗j )’s and C∗(θ)−1 is the r × r covariance matrix of the w(s∗i )’s.

When employing the computational strategy for generic low-rank models described in Sec-
tion 2.3, an alternative, but equivalent, parametrization is obtained by letting K(θ) =
C∗(θ)−1 and Z(θ) = C(θ)>. This has the added benefit of avoiding the computation of
C∗(θ)−1, which, though not expensive for low-rank models, can become numerically unstable
depending upon the choice of the covariance function. Now α ∼ N(0,C∗(θ)−1) is no longer
a vector of process realizations over the knots but it still is an r × 1 random vector with a
legitimate probability law. If the spatial effects over the knots are desired, they can be easily
obtained from the posterior samples of α and θ as C∗(θ)α.

We also offer an improvement over the predictive process, which attempts to capture the
residual from the low-rank approximation by adjusting for the residual variance (see, e.g.,
Finley, Sang, Banerjee, and Gelfand 2009). The difference between the spatial covariance
matrices for the full rank model (12) and the low-rank model is Cw(θ) − Z(θ)K(θ)Z(θ)>,
where Cw(θ) is the n× n covariance matrix of the spatial random effects for (12).

The modified predictive process model approximates this “residual” covariance matrix by ab-
sorbing its diagonal elements intoD(θ). Therefore,D(θ) = diag{Cw(θ)−Z(θ)K(θ)Z(θ)>}+
τ2In, where diag(A) denotes the diagonal matrix formed with the diagonal entries of A. The
remaining specifications for Z(θ), K(θ) and α in (1) remain the same as for the predictive
process.

We often refer to the modified predictive process as w̃ε(s) = w̃(s) + ε̃(s), where w̃(s) is the
predictive process and ε̃(s) is an independent process with zero mean and variance given by
var{w(s)} − var{w̃(s)}. In terms of the covariance function of w(s), the variance of ε̃(s) is
C(s, s;θ)− c(s,θ)>C∗(θ)−1c(s), where c(s) is the r× 1 vector of covariances between w(s)
and w(s∗j) as its entries. Also, w∗, w̃ and w̃ε denote the collection of w(s∗i )’s over the r
knots, w̃(si)’s over the n locations and w̃ε(si)’s over the n locations respectively.

A key issue in low-rank models is the choice of knots. Given a computationally feasible r
one could fix the knot locations using a grid over the extent of the domain, space-covering
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design (e.g., Royle and Nychka 1998), or more sophisticated approach aimed at minimizing a
predictive variance criterion (see, e.g., Finley et al. 2009; Guhaniyogi, Finley, Banerjee, and
Gelfand 2011). In practice, if the observed locations are evenly distributed across the domain,
we have found relatively small difference in inference based on knot locations chosen using
a grid, space-covering design, or other criterion. Rather, it is the number of knots locations
that has the greater impact on parameter estimates and subsequent prediction. Therefore, we
often investigate sensitivity of inference to different knot intensities, within a computationally
feasible range.

Example

Moving from (12) to its predictive process counterpart is as simple as passing a r × 2 matrix
of knot locations, via the knots argument, to the spLM function. Choice between the non-
modified and modified predictive process model, i.e., w̃(s) and w̃ε(s), is specified using the
modified.pp logical argument. Passing a spLM object, specified for a predictive process
model, to spRecover will yield posterior samples from w̃ or w̃ε and w∗.

We construct a second synthetic dataset using the same model and parameter values from
Section 4.1.1, but now generate 2, 000 observations. Parameters are then estimated using the
following candidate models: i) non-modified predictive process with 25 knot grid; ii) modified
predictive process with 25 knot grid; iii) non-modified predictive process with 100 knot grid,
and; iv) modified predictive process with 100 knot grid.

The spLM call for the 25 knot non-modified predictive process model is given below. The
starting, priors, and tuning arguments are taken from Section 4.1.1. As noted above, the
knots argument invokes the predictive process model. The value portion of this argument
c(5, 5, 0) specifies a 5 by 5 knot grid with should be placed over the extent of the observed
locations. The third value in this vector controls the extent of this grid, e.g., one may want
the knot grid to extend beyond the convex haul of the observed locations. The placement of
these knots is illustrated in Figure 2(b). Users can also pass in their own knot locations via
the knots argument.

R> m.i <- spLM(y ~ X - 1, coords = coords, knots = c(5, 5, 0),

+ starting = starting, tuning = tuning, priors = priors,

+ cov.model = "exponential", modified.pp = FALSE, n.samples = n.samples,

+ n.report = 2500)

----------------------------------------

General model description

----------------------------------------

Model fit with 2000 observations.

Number of covariates 2 (including intercept if specified).

Using the exponential spatial correlation model.

Using non-modified predictive process with 25 knots.

Number of MCMC samples 5000.

Priors and hyperpriors:

beta flat.

sigma.sq IG hyperpriors shape=2.00000 and scale=1.00000
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True i ii iii iv
β0 1 0.64 (−0.52, 1.83) 0.63 (−0.37, 1.62) 0.77 (0.07, 1.40) 0.78 (0.03, 1.48)
β1 5 4.99 (4.94, 5.05) 4.99 (4.94, 5.05) 4.98 (4.93, 5.03) 4.98 (4.93, 5.03)
σ2 2 2.3 (1.45, 3.48) 1.57 (1.04, 2.13) 1.89 (1.19, 2.60) 1.65 (1.23, 3.41)
τ2 1 1.72 (1.60, 1.84) 1.19 (0.98, 1.42) 1.41 (1.33, 1.51) 0.84 (0.56, 1.03)
φ 6 3.68 (3.00, 4.86) 3.39 (3.03, 4.17) 8.19 (5.62, 11.23) 7.75 (3.93, 11.3)

Time 0.13 0.14 0.70 0.77
Rel. time 0.17 0.19 0.92 1.00

Table 2: Candidate predictive process models’ parameter estimates, run-time (wall time) in
minutes, and run-time relative to model iv. Parameter posterior summary 50 (2.5, 97.5)
percentiles.

tau.sq IG hyperpriors shape=2.00000 and scale=1.00000

phi Unif hyperpriors a=3.00000 and b=30.00000

-------------------------------------------------

Sampling

-------------------------------------------------

Sampled: 2500 of 5000, 50.00%

Report interval Metrop. Acceptance rate: 35.20%

Overall Metrop. Acceptance rate: 35.20%

-------------------------------------------------

Sampled: 5000 of 5000, 100.00%

Report interval Metrop. Acceptance rate: 32.24%

Overall Metrop. Acceptance rate: 33.72%

-------------------------------------------------

Table 2 provides parameter estimates and run-time for all candidate models. Here, the pre-
dictive process induced upward bias, described in Section 4.2, is seen in model i and iii τ2

estimates. This bias is removed by using the modified predictive process, as illustrated by
model ii and iv variance parameter estimates. As show by the run-times, there is only a
marginal difference in computation overhead between the non-modified and modified predic-
tive process models. In most settings the modification should be used.

For comparison with Table 2, the full rank model required 5.18 minutes to generate the 5, 000
posterior samples. Also parameter estimates from the full rank model were comparable to
those of model iv. These attractive qualities of the predictive process models do not extend
to all settings. For example, if the range of spatial dependence is short relative to the spacing
of the knots, then covariance parameter estimation will suffer. We are obviously forgoing
some information about the underlying spatial process when using an array of knots that
is coarse compared to the number of observations. This is most easily seen by comparing
estimated spatial random effects surfaces to the true surface used to generate the data, as
shown in Figure 2. This smoothing of the random effects surface can translate into diminished
predictive ability and, in some cases, model parameter inference, compared to a full rank
model.

Following from Section 2.4, given coordinates and predictors for new locations, and a spLM

object, the spPredict function returns posterior predictive samples from y0. The spPredict

function provides a generic interface for prediction using most model functions in spBayes.
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Figure 2: Interpolated surfaces of the (a) observed spatial random effects and (b), (c), (d),
(e) are the estimated spatial random effects from models i, ii, iii, and iv, respectively. Filled
circle symbols in (b), (c), (d), (e) show the location of predictive process knots. (f) plots
holdout observed versus candidate model iv predicted median and 95% CI intervals with 1:1
line.
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The code below illustrates prediction using model iv for 1, 000 holdout locations. Here, X.ho
is the 1, 000 × 2 (i.e., t × p) predictor matrix associated with the 1, 000 holdout coordinates
stored in coords.ho.

R> m.iv.pred <- spPredict(m.iv, start = burn.in, thin = 2,

+ pred.covars = X.ho, pred.coords = coords.ho, verbose = FALSE)

R> y.hat <- apply(m.iv.pred$p.y.predictive.samples, 1, quants)

R> par(mar = c(5, 5, 5, 5))

R> plot(y.ho, y.hat[1,], pch = 19, cex = 0.5, xlab = "Observed y",

+ ylab = "Predicted y", ylim = range(y.hat), xlim = range(y.hat),

+ cex.lab = 2, cex.axis = 2)

R> arrows(y.ho, y.hat[1,], y.ho, y.hat[2,], angle = 90, length = 0.05)

R> arrows(y.ho, y.hat[1,], y.ho, y.hat[3,], angle = 90, length = 0.05)

R> lines(-20 : 20, -20 : 20, col = "blue")

Figure 2(f) shows the observed versus predicted values for the holdout locations. We expect
the posterior predictive 95% CIs will cover ∼950 of the true values in y0. For this analysis,
our coverage rate was 94.4 percent.

5. Multivariate Gaussian spatial regression models

Multivariate spatial regression models consider m point-referenced outcomes that are re-
gressed, at each location, on a known set of predictors

yj(s) = xj(s)
>βj + wj(s) + εj(s) , for j = 1, 2, . . . ,m , (15)

where xj(s) is a pj × 1 vector of predictors associated with outcome j, βj is the pj × 1 slope,
wj(s) and εj(s) are the spatial and random error processes associated with outcome yj(s).
Customarily, we assume the unstructured residuals ε(s) = (ε1(s), ε2(s), . . . , εm(s))> follow
a zero-centered multivariate normal distribution with zero mean and an m × m dispersion
matrix Ψ.

Spatial variation is modeled using an m × 1 Gaussian process w(s) = (w1(s), . . . , wm(s))>,
specified by a zero mean and a cross-covariance matrix Cw(s, t) with entries being covariance
between wi(s) and wj(t). spBayes uses the linear model of coregionalization (LMC) to specify
the cross-covariance. This assumes that Cw(s, t) = AM(s, t)A>, where A is m ×m lower-
triangular and M(s, t) is m × m diagonal with each diagonal entry a spatial correlation
function endowed with its own set of process parameters.

Suppose we have observed the m outcomes in each of b locations. Let y be n × 1, where
n = mb, obtained by stacking up the y(si)’s over the b locations. Let X be the n× p matrix
of predictors associated with y, where p =

∑m
j=1 pj , and β is p × 1 with the βj ’s stacked

correspondingly. Then, the hierarchical multivariate spatial regression models arise from (1)
with the following specifications: D(θ) = Ib⊗Ψ, α is n× 1 formed by stacking the wi’s and
K(θ) is n×n partitioned into m×m blocks given byAM(si, sj)A

>. The positive-definiteness
of K(θ) is ensured by the linear model of coregionalization (Gelfand, Schmidt, Banerjee, and
Sirmans 2004). spBayes also offers low rank multivariate models involving the predictive
process and the modified predictive process that can be estimated using strategies analogous
to Section 2.3. Both the full rank multivariate Gaussian model and its predictive process
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counterpart are implemented in the spMvLM function. Notation and additional background
for fitting these models is given by Banerjee et al. (2008) and Finley et al. (2009) as well as
example code in the spMvLM documentation examples.

6. Non-Gaussian models

Two typical non-Gaussian first stage settings are implemented in spBayes: i) binary response
at locations modeled using logit or probit regression, and; ii) count data at locations modeled
using Poisson regression. Diggle, Moyeed, and Tawn (1998) unify the use of generalized
linear models in spatial data contexts. See also Lin, Wahba, Xiang, Gao, Klein, and Klein
(2000), Kammann and Wand (2003) and Banerjee et al. (2004). Here we replace the Gaussian
likelihood in (1) with the assumption that E[y(s)] is linear on a transformed scale, i.e., η(s) ≡
g(E(y(s))) = x(s)>β+w(s) where g(·) is a suitable link function. We refer to these as spatial
generalized linear models (GLMs).

With the Gaussian first stage, we can marginalize over the spatial effects and implement our
MCMC over a reduced parameter space. With a binary or Poisson first stage, such marginal-
ization is precluded and we have to update the spatial effects in running our Gibbs sampler.
We offer both the traditional random-walk Metropolis as well as the adaptive random-walk
Metropolis (Roberts and Rosenthal 2009) to update the spatial effects. spBayes also provides
low-rank predictive process versions for spatial GLMs. The analogue of (1) is

p(θ)×N(β |µβ,Σβ)×N(α |0,K(θ))×
n∏
i=1

f(y(si) | η(si) ≡ x(si)
>β + zi(θ)>α) , (16)

where f(·) represents a Bernoulli or Poisson density with η(s) represents the mean of y(s) on
a transformed scale. This model and its predictive process counterpart is implemented in the
spGLM function. These models are extended to accommodate multivariate settings, outlined
in Section 5, using the spMvGLM function.

7. Dynamic spatio-temporal models

There are many different flavors of spatio-temporal data and an extensive statistical literature
that addresses the most common settings. The approach adopted here applies to the setting
where space is viewed as continuous, but time is assumed to be discrete. Put another way,
we view the data as a time series of spatial process realizations and work in the setting of
dynamic models. Building upon previous work in the setting of dynamic models by West and
Harrison (1997), several authors, including Stroud, Müler, and Sansó (2001) and Gelfand,
Banerjee, and Gamerman (2005), proposed dynamic frameworks to model residual spatial
and temporal dependence. These proposed frameworks are flexible and easily extended to
accommodate nonstationary and multivariate outcomes.

Dynamic linear models, or state-space models, have gained tremendous popularity in recent
years in fields as disparate as engineering, economics, genetics, and ecology. They offer a ver-
satile framework for fitting several time-varying models (West and Harrison 1997). Gelfand
et al. (2005) adapted the dynamic modeling framework to spatio-temporal models with spa-
tially varying coefficients. Alternative adaptations of dynamic linear models to space-time
data can be found in Stroud et al. (2001).
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7.1. Model specification

spBayes offers a relatively simple version of the dynamic models in Gelfand et al. (2005).
Suppose, yt(s) denotes the observation at location s and time t. We model yt(s) through
a measurement equation that provides a regression specification with a space-time varying
intercept and serially and spatially uncorrelated zero-centered Gaussian disturbances as mea-
surement error εt(s). Next a transition equation introduces a p × 1 coefficient vector, say
βt, which is a purely temporal component (i.e., time-varying regression parameters), and a
spatio-temporal component ut(s). Both these are generated through transition equations,
capturing their Markovian dependence in time. While the transition equation of the purely
temporal component is akin to usual state-space modeling, the spatio-temporal component is
generated using Gaussian spatial processes. The overall model is written as

yt(s) = xt(s)
>βt + ut(s) + εt(s), εt(s)

ind.∼ N(0, τ2t ) ;

βt = βt−1 + ηt, ηt
i.i.d.∼ N(0,Ση) ;

ut(s) = ut−1(s) + wt(s), wt(s)
ind.∼ GP (0, Ct(·,θt)) , t = 1, 2, . . . , Nt , (17)

where the abbreviations ind. and i.i.d are independent and independent and identically dis-
tributed, respectively. Here xt(s) is a p × 1 vector of predictors and βt is a p × 1 vector of
coefficients. In addition to an intercept, xt(s) can include location specific variables useful for
explaining the variability in yt(s). The GP (0, Ct(·,θt)) denotes a spatial Gaussian process
with covariance function Ct(·;θt). We customarily specify Ct(s1, s2;θt) = σ2t ρ(s1, s2;φt),
where θt = {σ2t , φt} and ρ(·;φ) is a correlation function with φ controlling the correlation
decay and σ2t represents the spatial variance component. We further assume β0 ∼ N(m0,Σ0)
and u0(s) ≡ 0, which completes the prior specifications leading to a well-identified Bayesian
hierarchical model with reasonable dependence structures. In practice, estimation of model
parameters are usually very robust to these hyper-prior specifications. Also note that (17)
reduces to a simple spatial regression model for t = 1.

We consider settings where the inferential interest lies in spatial prediction or interpolation
over a region for a set of discrete time points. We also assume that the same locations are
monitored for each time point resulting in a space-time matrix whose rows index the locations
and columns index the time points, i.e., the (i, j)-th element is yj(si). Our algorithm will
accommodate the situation where some cells of the space-time data matrix may have missing
observations, as is common in monitoring environmental variables.

Conducting full Bayesian inference for (17) is computationally onerous and spBayes also offers
a modified predictive process counterpart of (17). This is achieved by replacing ut(s) in (17)
with ũt(s) =

∑t
k=1 [w̃k(s) + ε̃k(s)], where w̃k(s) is the predictive process as defined in (14)

and the “adjustment” ε̃t(s) compensates for the oversmoothing by the conditional expectation
component and the consequent underestimation of spatial variability (see Finley, Banerjee,
and Gelfand 2012) for details.

Example

The dynamic model (17) and its predictive process counterpart are implemented in the
spDynLM function. Here we illustrate the full rank dynamic model using an ozone moni-
toring dataset that was previously analyzed by Sahu and Bakar (2011). This is a relatively
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Figure 3: Open and filled circle symbols indicate the location of 28 ozone monitoring stations
across New York State. Filled circle symbols identify those stations that have half of the daily
ozone measurements withheld to assess model predictive performance.

small dataset and does not require dimension reduction. Note, however, similar to other sp-
Bayes models, moving from full to low-rank representation of ut only requires specification
of knot locations via the knots argument in the model call.

The dataset comprises 28 Environmental Protection Agency monitoring stations that recorded
ozone from July 1 to August 31, 2006. The outcome is daily 8-hour maximum average ozone
concentrations (parts per billion; O3.8HRMAX), and predictors include maximum temper-
ature (Celsius; cMAXTMP), wind speed (knots; WDSP), and relative humidity (RM). Of
the 1, 736 possible observations, i.e., n=28 locations times Nt=62 daily O3.8HRMAX mea-
surements, 114 are missing. In this illustrative analysis we use the predictors cMAXTMP,
WDSP, and RM as well as the spatially and temporally structured residuals to predict missing
O3.8HRMAX values. To gain a better sense of the dynamic model’s predictive performance,
we withheld half of the observations from the records of three stations for subsequent valida-
tion. Figure 3 shows the monitoring station locations and identifies those stations where data
were withheld.

The first spDynLM function argument is a list of Nt symbolic model statements representing
the regression within each time step. This can be easily assembled using the lapply function
as shown in the code below. Here too, we define the station coordinates as well as starting,
tuning, and prior distributions for the model parameters. Exploratory data analysis using
time step specific variograms can be helpful for defining starting values and prior support
for parameters in θt and τ2t . To avoid cluttering the code, we specify the same prior for
the φt’s, σ

2
t ’s, and τ2t ’s. As in the other spBayes model functions, one can choose among

several popular spatial correlation functions including the exponential, spherical, Gaussian
and Matérn. The exponential correlation function is specified in the spDynLM call below.
Unlike other model functions described in the preceding sections, the spDynLM function will
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accept NA yt(s) values. The sampler will provide posterior predictive samples for these missing
values. If the get.fitted argument is TRUE then these posterior predictive samples are save
along with posterior fitted values for locations where the outcomes are observed.

R> mods <- lapply(paste("O3.8HRMAX.", 1:N.t, "~cMAXTMP.", 1:N.t, "+WDSP.",

+ 1:N.t, "+RH.", 1:N.t, sep = ""), as.formula)

R> p <- 4

R> coords <- NYOzone.dat[, c("X.UTM", "Y.UTM")]/1000

R> max.d <- max(iDist(coords))

R> starting <- list("beta" = rep(0, N.t * p),

+ "phi" = rep(3/(0.5*max.d), N.t), "sigma.sq" = rep(2,N.t),

+ "tau.sq" = rep(1, N.t), "sigma.eta" = diag(rep(0.01, p)))

R> tuning <- list("phi" = rep(2, N.t))

R> priors <- list("beta.0.Norm" = list(rep(0, p), diag(100000, p)),

+ "phi.Unif" = list(rep(3/(0.9 * max.d), N.t),

+ rep(3/(0.05 * max.d), N.t)),

+ "sigma.sq.IG" = list(rep(2, N.t), rep(25, N.t)),

+ "tau.sq.IG" = list(rep(2, N.t), rep(25, N.t)),

+ "sigma.eta.IW" = list(2, diag(0.001, p)))

R> n.samples <- 5000

R> m.i <- spDynLM(mods, data = NYOzone.dat, coords = as.matrix(coords),

+ starting = starting, tuning = tuning, priors = priors,

+ get.fitted = TRUE, cov.model = "exponential", n.samples = n.samples,

+ n.report = 2500)

----------------------------------------

General model description

----------------------------------------

Model fit with 28 observations in 62 time steps.

Number of missing observations 117.

Number of covariates 4 (including intercept if specified).

Using the exponential spatial correlation model.

Number of MCMC samples 5000.

Priors and hyperpriors:

beta normal:

m_0: 0.000 0.000 0.000 0.000

Sigma_0:

100000.000 0.000 0.000 0.000

0.000 100000.000 0.000 0.000

0.000 0.000 100000.000 0.000

0.000 0.000 0.000 100000.000

sigma.sq_t=1 IG hyperpriors shape=2.00000 and scale=25.00000

tau.sq_t=1 IG hyperpriors shape=2.00000 and scale=25.00000

phi_t=1 Unif hyperpriors a=0.00564 and b=0.10145

---
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Figure 4: Posterior distribution medians and 95% credible intervals for model intercept and
predictors.

sigma.sq_t=2 IG hyperpriors shape=2.00000 and scale=25.00000

tau.sq_t=2 IG hyperpriors shape=2.00000 and scale=25.00000

phi_t=2 Unif hyperpriors a=0.00564 and b=0.10145

---

...

---

sigma.sq_t=62 IG hyperpriors shape=2.00000 and scale=25.00000

tau.sq_t=62 IG hyperpriors shape=2.00000 and scale=25.00000

phi_t=62 Unif hyperpriors a=0.00564 and b=0.10145

---

-------------------------------------------------

Sampling

-------------------------------------------------

Sampled: 2499 of 5000, 49.98%

Report interval Mean Metrop. Acceptance rate: 49.05%

Overall Metrop. Acceptance rate: 49.07%

-------------------------------------------------

Sampled: 4999 of 5000, 99.98%

Report interval Mean Metrop. Acceptance rate: 49.48%

Overall Metrop. Acceptance rate: 49.28%

-------------------------------------------------

Time series plots of parameters’ posterior summary statistics are often useful for exploring
the temporal evolution of the parameters. In the case of the regression coefficients, these plots
describe the time-varying trend in the outcome and impact of covariates. For example, the
sinusoidal pattern in the model intercept, β0, seen in Figure 4, correlates strongly with both
cMAXTMP, RM, and to a lesser degree with WDSP. With only a maximum of 28 observations
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Figure 5: Posterior distribution medians and 95% credible intervals for θ and τ2.

Figure 6: Posterior predicted distribution medians and 95% credible intervals, solid and
dashed lines respectively, for three stations. Open circle symbols indicate those observa-
tions use for model parameter estimation and filled circle symbols indicate those observations
withheld for validation.

within each time step, there is not much information to inform estimates of θ. As seen in
Figure 5, this paucity of information is reflected in the imprecise CI’s for the φ’s and small
deviations from the priors on σ2 and τ2. There are, however, noticeable trends in the variance
components over time.

Figure 6 shows the observed and predicted values for the three stations used for validation.
Here, open circle symbols indicate those observations used for parameter estimation and filled
circles identify holdout observations. The posterior predicted median and 95% CIs are overlaid
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using solid and dashed lines, respectively. Three of the 36 holdout measurements fell outside
of their 95% predicted CI, a ∼92% coverage rate. As noted in Sahu and Bakar (2011), there
is a noticeable reduction in ozone levels in the last two weeks in August.

8. Model choice

The spDiag function provides several approaches to assessing model performance and subse-
quent comparison for spLM, spMvLM, spGLM, and spMvGLM objects. These include the popular
deviance information criterion (Spiegelhalter, Best, Carlin, and Linde 2002) as well as a mea-
sure of posterior predictive loss detailed in Gelfand and Ghosh (1998) and a scoring rule
defined in Gneiting and Raftery (2007).

9. Summary and future direction

spBayes version 0.3-7 (CRAN 2013-06-01), and subsequent versions, offers a complete refor-
mulation and rewrite of core functions for efficient estimation of univariate and multivariate
models for point-referenced data using MCMC. Substantial increase in computational effi-
ciency and flexibility in model specification, compared earlier spBayes package versions, is
the result of careful MCMC sampler formulation that focused on reducing parameter space
and avoiding expensive matrix operations. In addition, all core functions provide predictive
process models able to accommodate large data sets that are being increasingly encountered
in many fields.

We are currently developing an efficient modeling framework and sampling algorithm to ac-
commodate multivariate spatially misaligned data, i.e., settings where not all of the outcomes
are observed at all locations, that will be added to the spMvLM and spMvGLM functions. Predic-
tion of these missing outcomes should borrow strength from the covariance among outcomes
both within and across locations. In addition, we hope to add functions for non-stationary
multivariate models such as those described in Gelfand et al. (2004) and more recent predic-
tive process versions we developed in Guhaniyogi, Finley, Banerjee, and Kobe (2013). We
will also continue developing spDynLM and helper functions. Ultimately, we would like to
provide more flexible specifications of spatio-temporal dynamic models and allow them to
accommodate non-Gaussian and multivariate outcomes.
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