
Calling C/C++ from R and Fun with OpenMP

September 24, 2019

Scaling Problems in Statistics 2019

Our focus today

What we’re not doing

I developing an R package (see, e.g., official documentation
Writing R Extensions and Hadly Wickham R packages)

I learning C/C++, FORTRAN, R, or OpenMP
I taking a deep look at any one topic

What we are doing

I mentioning some topics that might get you thinking about how
to improve your code

I scratching the surface of some expansive topics in computing
I providing some code and ideas that might point you in the

right direction

Scaling Problems in Statistics 2019

https://cran.r-project.org
http://r-pkgs.had.co.nz/

Why connect R and lower-level code
R is an interpreted language and, as a result, can be slow at

I vectorizing loops whose subsequent iterations depend on
previous iterations

I executing recursive functions

Also, we often want to use data structures, algorithms, and libraries
written in lower-level code (e.g., BLAS, LAPACK, CHOLMOD,
Eigen, GNU Scientific Library, etc.).

We could just write standalone code, but

I R is nice for input/output and other tasks in-between
I we might want to use some of R’s C functions, e.g., RNGs and

distributions in Rmath.h
I we might eventually write an R package
I simplifies in-house code sharing and teaching

Scaling Problems in Statistics 2019

R Foreign Language Interfaces
The authoritative document is “Writing R Extensions” found at
https://cran.r-project.org.

We’ll focus on calling C/C++ for now (but calling FORTRAN and
JAVA is similar). There are three approaches for passing stuff
between R and C/C++.

1. .Call() designed for calling code that understands R objects
and environments. Allows multiple arguments to be passed to
C/C++ and R objects returned.

2. External() like .Call() but the C/C++ function is passed
as a single argument containing a LISTSXP, a pairlist from
which the arguments can be extracted.

3. .C() (and .Fortran) designed to call code that does not
know about R. Straightforward, but limited types of arguments
and all checking of arguments must be done in R. No return
value, but may alter its arguments.

Scaling Problems in Statistics 2019

https://cran.r-project.org

Why not Rcpp?
There are some real advantages to using Rcpp

I Rcpp API (Application Programming Interface) “protects you
from many of the historical idiosyncrasies of the R
API”–Hadley Wickham

I takes care of memory management
I provides helper methods to working with R objects in C++
I many more advantages, see, e.g., http://www.rcpp.org/

Sounds good, so why use R’s API?

I preference to write standalone flexible C/C++ code, then with
slight modification can be called from R

I one fewer level of abstraction to deal with (and perhaps some
overhead)—feels closer to the metal

I it’s what I know well and how most R packages with source
code are written

Scaling Problems in Statistics 2019

http://www.rcpp.org/

Moving between R and C/C++ types

Mapping between the modes of R atomic vectors and the types of
arguments to a C function or FORTRAN subroutine.

R storage mode C type FORTRAN type

logical int * INTEGER
integer int * INTEGER
double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char ** CHARACTER*255
raw unsigned char * none

Scaling Problems in Statistics 2019

Getting started

Calling a C/C++ function from R requires two pieces: a C/C++
function and an R wrapper function that uses .Call().

Compile the C/C++ code and call from R as a shared object .so
(Linux or MacOS X) or as a .dll (Windows).

From within R load the compiled object using dyn.load() and
unload it using dyn.unload().

Scaling Problems in Statistics 2019

Exercise #2

Let’s turn to Exercise 2 cIDist.R and cIDist.cpp files.

Scaling Problems in Statistics 2019

Parallel computing with OpenMP

OpenMP is an industry standard API of C/C++ and FORTRAN for
shared memory parallel programming.

OpenMP is based on two concepts: the use of threads (think CPUs)
and the fork/join model of parallelism:

All threads have access to the same shared global memory. Each
thread has access to its private variables and common variables1.

1figure credit: www.nersc.gov
Scaling Problems in Statistics 2019

www.nersc.gov

Parallel computing with OpenMP

Some advantages

I high-level directives (pragma) used to define parallel regions
simplify coding and decisions

I parallelism can be added incrementally
I compilers (or you) can optimize the number of threads needed

by parallel region

“With great power comes great responsibility”—Benjamin Parker
(a.k.a Uncle Ben)

You must be sure that what you are doing in parallel regions is
thread-safe—it’s very easy to make mistakes that compile without
error.

Scaling Problems in Statistics 2019

Exercise #2 revisited

Consider Exercise 2 but now cIDistOMP.R and cIDistOMP.cpp
files.

Scaling Problems in Statistics 2019

Code gone wrong (then right)
Let’s construct a spatial correlation matrix using the Matern
function such that the i , j-th element is equal to

R(θ)i ,j = 1
2ν−1Γ(ν)(di ,jφ)νKν(di ,jφ);φ > 0, ν 0, (1)

where θ = (φ, ν) with φ controlling the decay and ν controlling
smoothness, Γ is the Gamma function, and Kν is a modified Bessel
function of the second kind with order ν.
In R speak this is

(D*phi)^nu/(2^(nu-1)*gamma(nu))*besselK(x=D*phi, nu=nu)

and C using Rmath.h functions

pow(D[i]*phi, nu)/(pow(2, nu-1)*gammafn(nu)*
bessel_k(D[i]*phi, nu, 1.0)

Scaling Problems in Statistics 2019

Exercise #3

Consider Exercise 3 but now cRMaternOMPWrong.cpp and
cRMaternOMPWrong.cpp files.

Scaling Problems in Statistics 2019

Now making it thread-safe

The problem is that R’s bessel_k C function is not thread-safe.
Note the bk vector is allocated within bessel_k.c.

Instead use undocumented bessel_k_ex in bessel_k.c as
illustrated in cRMaternOMPSafe.cpp.

Here we:

I allocate enough working space for each thread outside the
parallel region

I use each thread’s id (i.e., 0, 1, . . . , nTheads− 1) via
omp_get_thread_num() to index the working space passed to
bessel_k_ex

Scaling Problems in Statistics 2019

