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I Researchers in diverse areas such as ecology, forestry, climatology,
and environmental health, are increasingly faced with the task of
analyzing data that are:
I highly multivariate, with many important predictors and response

variables,

I geographically referenced, and often presented as maps, and

I temporally correlated, as in longitudinal or other time series
structures.

⇒ motivates hierarchical modeling and data analysis for complex
spatial (and spatiotemporal) data sets.
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I point-referenced data, where y(s) is a random vector at a location
s ∈ <r , where s varies continuously over D, a fixed subset of <r that
contains an r -dimensional rectangle of positive volume;

I areal data, where D is again a fixed subset (of regular or irregular
shape), but now partitioned into a finite number of areal units with
well-defined boundaries;

I point pattern data, where now D is itself random; its index set gives
the locations of random events that are the spatial point pattern.
y(s) itself can simply equal 1 for all s ∈ D (indicating occurrence of
the event), or possibly give some additional covariate information
(producing a marked point pattern process).
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Algorithmic Modeling

I Spatial surface observed at finite set of locations S = {s1, s2, ..., sn}
I Tessellate the spatial domain (usually with data locations as vertices)
I Fit an interpolating polynomial:

f (s) =
∑

i
wi (S; s)f (si )

I “Interpolate” by reading off f (s0).
I Includes: triangulation, weighted averages, geographically weighted

regression (GWR)
I Issues:

I Sensitivity to tessellations
I Choices of multivariate interpolators
I Numerical error analysis
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Simple linear model

y(s) = µ(s) + ε(s),

I Response: y(s) at location s
I Mean: µ = x(s)>β

I Error: ε(s) iid∼ N(0, τ 2)

D

y(s), x(s)
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Simple linear model

y(s) = µ(s) + ε(s),

Assumptions regarding ε(s):
I ε(s) iid∼ N(0, τ 2)

I ε(si ) and ε(sj) are uncorrelated for all i 6= j

D

ε(si )
ε(sj )
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Spatial Gaussian processes (GP):
I Say w(s) ∼ GP(0, σ2ρ(·)) and

Cov(w(s1),w(s2)) = σ2ρ (φ; ‖s1 − s2‖)

I Let w = [w(si )]ni=1, then

w ∼ N(0, σ2R(φ)), where R(φ) = [ρ(φ; ‖si − sj‖)]ni,j=1

D

w(si )
w(sj )

Scaling Problems in Statistics 2019



Spatial Gaussian processes (GP):
I Say w(s) ∼ GP(0, σ2ρ(·)) and

Cov(w(s1),w(s2)) = σ2ρ (φ; ‖s1 − s2‖)

I Let w = [w(si )]ni=1, then

w ∼ N(0, σ2R(φ)), where R(φ) = [ρ(φ; ‖si − sj‖)]ni,j=1

D

w(si )
w(sj )

Scaling Problems in Statistics 2019



Realization of a Gaussian process:
I Changing φ and holding σ2 = 1:

w ∼ N(0, σ2R(φ)), where
R(φ) = [ρ(φ; ‖si − sj‖)]ni,j=1

I Correlation model for R(φ):
e.g., exponential decay

ρ(φ; t) = exp(−φt) if t > 0.

I Other valid models e.g., Gaussian,
Spherical, Matérn.

I Effective range, t0 = −ln(0.05)/φ ≈ 3/φ
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w ∼ N(0, σ2R(φ)) provides complex spatial dependence through simple
structured dependence.

E.g., anisotropic Matérn correlation function:
ρ(si , sj ; φ) =

(
1/Γ(ν)2ν−1

) (
2
√
νdij )νκν(2

√
νdij
)

, where
dij = (si − sj )′ Σ−1 (si − sj ), Σ = G(ψ)Λ2G(ψ)′. Thus, φ = (ν, ψ,Λ).

Simulated Predicted
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Simple linear model + random spatial effects

y(s) = µ(s) + w(s) + ε(s),

I Response: y(s) at some site

I Mean: µ = x(s)>β

I Spatial random effects: w(s) ∼ GP(0, σ2ρ(φ; ‖s1 − s2‖))

I Non-spatial variance: ε(s) iid∼ N(0, τ 2). Interpretation as pure error,
measurement error, replication error, microscale error.
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Hierarchical modeling

I First stage:

y|β,w, τ 2 ∼
n∏

i=1
N(y(si ) | x(si )>β + w(si ), τ 2)

I Second stage:
w|σ2, φ ∼ N(0, σ2R(φ))

I Third stage: Priors on Ω = (β, τ 2, σ2, φ)
I Collapsed likelihood:

y|Ω ∼ N(Xβ, σ2R(φ) + τ 2I)

I Note: Spatial process parametrizes Σ:
y = Xβ + ε, ε ∼ N (0,Σ) , Σ = σ2R(φ) + τ 2I
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Bayesian Computations

I Choice: Fit [y|Ω]× [Ω] or [y|β,w, τ 2]× [w|σ2, φ]× [Ω].

I Conditional model:
I conjugate full conditionals for β, σ2, τ 2 and w – easier to program.

I Marginalized model:
I Need Metropolis or Slice sampling for σ2, τ 2 and φ. Harder to

program.
I But, reduced parameter space ⇒ faster convergence
I σ2R(φ) + τ 2I is more stable than σ2R(φ).

I But what about R−1(φ) ?? EXPENSIVE!
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Where are the w’s?

I Interest often lies in the spatial surface w|y.

I They are recovered from

[w|y,X ] =
∫

[w|Ω, y,X ]× [Ω|y,X ]dΩ

using posterior samples:
I Obtain Ω(1), . . . ,Ω(G) ∼ [Ω|y,X]
I For each Ω(g), draw w(g) ∼ [w|Ω(g), y,X]

I NOTE: With Gaussian likelihoods [w|Ω, y,X] is also Gaussian. With
other likelihoods this may not be a standard distribution; conditional
updating scheme is preferred.
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I Often we need to predict y(s) at a new set of locations {s̃0, . . . , s̃ñ}
with associated predictor matrix X̃.

I Sample from predictive distribution:

[ỹ|y,X, X̃] =
∫

[ỹ,Ω|y,X, X̃]dΩ

=
∫

[ỹ|y,Ω,X, X̃]× [Ω|y,X]dΩ,

[ỹ|y,Ω,X, X̃] is multivariate normal. Sampling scheme:
I Obtain Ω(1), . . . ,Ω(G) ∼ [Ω|y,X]
I For each Ω(g), draw ỹ(g) ∼ [ỹ|y,Ω(g),X, X̃].
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