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Bayesian hierarchical linear mixed model

p(0) x N(B|pg, Ep) x N(a|0,K(0)) x N(y | X8 + Z(0)x, D(0))
» yis an n x 1 vector of possibly irregularly located observations,
> X is a known n x p matrix of regressors (p < n),

» K(0) and D(0) are families of r x r and n x n covariance matrices,
respectively,

» Z(0) is n x r with r < n, all indexed by a set of unknown process
parameters 6.

» « is the r x 1 random vector and 3 is the p x 1 slope vector.
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» K(0) and D(0) are families of r x r and n x n covariance matrices,
respectively,

» Z(0) is n x r with r < n, all indexed by a set of unknown process
parameters 6.

» « is the r x 1 random vector and 3 is the p x 1 slope vector.

Space-varying intercept model is a special case where D(0) = 721,
a = (w(s1),w(sy),...,w(s,))", Z(8) = I,, and the n x n
K(0) = o?R(¢).
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For faster convergence, we integrate out 8 and «a from the model and
first sample from

p(01y) o< p(0) x N(y|Xpg, Xy 0),

where X,y = XEX " +Z(0)K(0)Z(9)" + D(0).

This involves evaluating
1 1
log p(6|y) = const + log p(6) — 7 log | =, o] — 5 Q(6) ,

where Q(6) = (y — Xpg) "X, [, (y — Xps).
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p(01y) o< p(0) x N(y|Xpg, Xy 0),

where X,y = XEX " +Z(0)K(0)Z(9)" + D(0).

This involves evaluating
1 1
log p(6|y) = const + log p(6) — 7 log | =, o] — 5 Q(6) ,

where Q(6) = (y — Xpg) "X, [, (y — Xps).
1. L = chol(X, ), lower-triangular Cholesky factor L of e
(O(n*/3) flops)
2. u=trsolve(L,y — Xpp), solves Lu =y — Xpug (O(n?) flops)
3. Q(8) =u'u (2n flops)

4. log-determinant is 227:1 log i, where [; are the diagonal entries in
L (n flops)
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Given marginal posterior samples 6 from p(0|y), we can draw posterior
samples of B and « using composition sampling.

We'll consider a portion of this algorithm in a subsequent exercise.

For more details see Finley, A.O., S. Banerjee, A.E. Gelfand. (2015)
spBayes for large univariate and multivariate point-referenced
spatio-temporal data models. Journal of Statistical Software, 63:1-28.
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