Efficient Implementation of Bayesian Hierarchical Linear Models

September 18, 2019

Bayesian hierarchical linear mixed model

 $p(\boldsymbol{\theta}) \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta}\right) \times N(\boldsymbol{\alpha} \mid \mathbf{0}, \mathbf{K}(\boldsymbol{\theta})) \times N(\mathbf{y} \mid \mathbf{X} \boldsymbol{\beta}+\mathbf{Z}(\boldsymbol{\theta}) \boldsymbol{\alpha}, \mathbf{D}(\boldsymbol{\theta}))$- y is an $n \times 1$ vector of possibly irregularly located observations,
- \mathbf{X} is a known $n \times p$ matrix of regressors $(p<n)$,
- $\mathbf{K}(\boldsymbol{\theta})$ and $\mathbf{D}(\boldsymbol{\theta})$ are families of $r \times r$ and $n \times n$ covariance matrices, respectively,
- $\mathbf{Z}(\boldsymbol{\theta})$ is $n \times r$ with $r \leq n$, all indexed by a set of unknown process parameters $\boldsymbol{\theta}$.
- α is the $r \times 1$ random vector and β is the $p \times 1$ slope vector.

Bayesian hierarchical linear mixed model

 $p(\boldsymbol{\theta}) \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta}\right) \times N(\boldsymbol{\alpha} \mid \mathbf{0}, \mathbf{K}(\boldsymbol{\theta})) \times N(\mathbf{y} \mid \mathbf{X} \boldsymbol{\beta}+\mathbf{Z}(\boldsymbol{\theta}) \boldsymbol{\alpha}, \mathbf{D}(\boldsymbol{\theta}))$- \mathbf{y} is an $n \times 1$ vector of possibly irregularly located observations,
- \mathbf{X} is a known $n \times p$ matrix of regressors $(p<n)$,
- $\mathbf{K}(\boldsymbol{\theta})$ and $\mathbf{D}(\boldsymbol{\theta})$ are families of $r \times r$ and $n \times n$ covariance matrices, respectively,
- $\mathbf{Z}(\boldsymbol{\theta})$ is $n \times r$ with $r \leq n$, all indexed by a set of unknown process parameters $\boldsymbol{\theta}$.
- α is the $r \times 1$ random vector and β is the $p \times 1$ slope vector.

Space-varying intercept model is a special case where $\mathbf{D}(\boldsymbol{\theta})=\tau^{2} I_{n}$, $\boldsymbol{\alpha}=\left(w\left(\mathbf{s}_{1}\right), w\left(\mathbf{s}_{2}\right), \ldots, w\left(\mathbf{s}_{n}\right)\right)^{\top}, \mathbf{Z}(\boldsymbol{\theta})=I_{n}$, and the $n \times n$ $\mathbf{K}(\boldsymbol{\theta})=\sigma^{2} \mathbf{R}(\phi)$.

For faster convergence, we integrate out β and α from the model and first sample from

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\boldsymbol{\theta}) \times N\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{y \mid \theta}\right),
$$

where $\boldsymbol{\Sigma}_{y \mid \theta}=\mathbf{X} \boldsymbol{\Sigma}_{\beta} \mathbf{X}^{\top}+\mathbf{Z}(\boldsymbol{\theta}) \mathbf{K}(\boldsymbol{\theta}) \mathbf{Z}(\boldsymbol{\theta})^{\top}+\mathbf{D}(\boldsymbol{\theta})$.
This involves evaluating

$$
\log p(\boldsymbol{\theta} \mid \mathbf{y})=\text { const }+\log p(\boldsymbol{\theta})-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{y \mid \theta}\right|-\frac{1}{2} Q(\boldsymbol{\theta}),
$$

where $Q(\boldsymbol{\theta})=\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)^{\top} \boldsymbol{\Sigma}_{y \mid \theta}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$.

For faster convergence, we integrate out β and α from the model and first sample from

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\boldsymbol{\theta}) \times N\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{y \mid \theta}\right),
$$

where $\boldsymbol{\Sigma}_{y \mid \theta}=\mathbf{X} \boldsymbol{\Sigma}_{\beta} \mathbf{X}^{\top}+\mathbf{Z}(\boldsymbol{\theta}) \mathbf{K}(\boldsymbol{\theta}) \mathbf{Z}(\boldsymbol{\theta})^{\top}+\mathbf{D}(\boldsymbol{\theta})$.
This involves evaluating

$$
\log p(\boldsymbol{\theta} \mid \mathbf{y})=\text { const }+\log p(\boldsymbol{\theta})-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{y \mid \theta}\right|-\frac{1}{2} Q(\boldsymbol{\theta}),
$$

where $Q(\boldsymbol{\theta})=\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)^{\top} \boldsymbol{\Sigma}_{y \mid \theta}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$.

1. $\mathbf{L}=\operatorname{chol}\left(\boldsymbol{\Sigma}_{y \mid \theta}\right)$, lower-triangular Cholesky factor \mathbf{L} of $\boldsymbol{\Sigma}_{y \mid} \boldsymbol{\theta}$ ($O\left(n^{3} / 3\right.$) flops)

For faster convergence, we integrate out β and α from the model and first sample from

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\boldsymbol{\theta}) \times N\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{y \mid \theta}\right),
$$

where $\boldsymbol{\Sigma}_{y \mid \theta}=\mathbf{X} \boldsymbol{\Sigma}_{\beta} \mathbf{X}^{\top}+\mathbf{Z}(\boldsymbol{\theta}) \mathbf{K}(\boldsymbol{\theta}) \mathbf{Z}(\boldsymbol{\theta})^{\top}+\mathbf{D}(\boldsymbol{\theta})$.
This involves evaluating

$$
\log p(\boldsymbol{\theta} \mid \mathbf{y})=\text { const }+\log p(\boldsymbol{\theta})-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{y \mid \theta}\right|-\frac{1}{2} Q(\boldsymbol{\theta}),
$$

where $Q(\boldsymbol{\theta})=\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)^{\top} \boldsymbol{\Sigma}_{y \mid \theta}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$.

1. $\mathbf{L}=\operatorname{chol}\left(\boldsymbol{\Sigma}_{y \mid \theta}\right)$, lower-triangular Cholesky factor \mathbf{L} of $\boldsymbol{\Sigma}_{y \mid} \boldsymbol{\theta}$ ($O\left(n^{3} / 3\right.$) flops)
2. $\mathbf{u}=\operatorname{trsolve}\left(\mathbf{L}, \mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$, solves $\mathbf{L u}=\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}$ ($O\left(n^{2}\right)$ flops $)$

For faster convergence, we integrate out β and α from the model and first sample from

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\boldsymbol{\theta}) \times N\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{y \mid \theta}\right),
$$

where $\boldsymbol{\Sigma}_{y \mid \theta}=\mathbf{X} \boldsymbol{\Sigma}_{\beta} \mathbf{X}^{\top}+\mathbf{Z}(\boldsymbol{\theta}) \mathbf{K}(\boldsymbol{\theta}) \mathbf{Z}(\boldsymbol{\theta})^{\top}+\mathbf{D}(\boldsymbol{\theta})$.
This involves evaluating

$$
\log p(\boldsymbol{\theta} \mid \mathbf{y})=\text { const }+\log p(\boldsymbol{\theta})-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{y \mid \theta}\right|-\frac{1}{2} Q(\boldsymbol{\theta}),
$$

where $Q(\boldsymbol{\theta})=\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)^{\top} \boldsymbol{\Sigma}_{y \mid \theta}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$.

1. $\mathbf{L}=\operatorname{chol}\left(\boldsymbol{\Sigma}_{y \mid \theta}\right)$, lower-triangular Cholesky factor \mathbf{L} of $\boldsymbol{\Sigma}_{y \mid} \boldsymbol{\theta}$ ($O\left(n^{3} / 3\right.$) flops)
2. $\mathbf{u}=\operatorname{trsolve}\left(\mathbf{L}, \mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$, solves $\mathbf{L u}=\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\left(O\left(n^{2}\right)\right.$ flops $)$
3. $Q(\boldsymbol{\theta})=\mathbf{u}^{\top} \mathbf{u}$ (2n flops)

For faster convergence, we integrate out β and α from the model and first sample from

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\boldsymbol{\theta}) \times N\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{y \mid \theta}\right),
$$

where $\boldsymbol{\Sigma}_{y \mid \theta}=\mathbf{X} \boldsymbol{\Sigma}_{\beta} \mathbf{X}^{\top}+\mathbf{Z}(\boldsymbol{\theta}) \mathbf{K}(\boldsymbol{\theta}) \mathbf{Z}(\boldsymbol{\theta})^{\top}+\mathbf{D}(\boldsymbol{\theta})$.
This involves evaluating

$$
\log p(\boldsymbol{\theta} \mid \mathbf{y})=\text { const }+\log p(\boldsymbol{\theta})-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{y \mid \theta}\right|-\frac{1}{2} Q(\boldsymbol{\theta}),
$$

where $Q(\boldsymbol{\theta})=\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)^{\top} \boldsymbol{\Sigma}_{y \mid \theta}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$.

1. $\mathbf{L}=\operatorname{chol}\left(\boldsymbol{\Sigma}_{y \mid \theta}\right)$, lower-triangular Cholesky factor \mathbf{L} of $\boldsymbol{\Sigma}_{y \mid} \boldsymbol{\theta}$ ($O\left(n^{3} / 3\right.$) flops)
2. $\mathbf{u}=\operatorname{trsolve}\left(\mathbf{L}, \mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}\right)$, solves $\mathbf{L u}=\mathbf{y}-\mathbf{X} \boldsymbol{\mu}_{\beta}$ ($O\left(n^{2}\right)$ flops $)$
3. $Q(\boldsymbol{\theta})=\mathbf{u}^{\top} \mathbf{u}$ (2n flops)
4. log-determinant is $2 \sum_{i=1}^{n} \log \iota_{i i}$, where $\iota_{i i}$ are the diagonal entries in L (n flops)

Given marginal posterior samples $\boldsymbol{\theta}$ from $p(\boldsymbol{\theta} \mid \mathbf{y})$, we can draw posterior samples of β and α using composition sampling.

We'll consider a portion of this algorithm in a subsequent exercise.

For more details see Finley, A.O., S. Banerjee, A.E. Gelfand. (2015) spBayes for large univariate and multivariate point-referenced spatio-temporal data models. Journal of Statistical Software, 63:1-28.

