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Bayesian hierarchical linear mixed model
p(θ)× N(β |µβ ,Σβ)× N(α | 0,K(θ))× N(y |Xβ + Z(θ)α,D(θ))

I y is an n × 1 vector of possibly irregularly located observations,
I X is a known n × p matrix of regressors (p < n),
I K(θ) and D(θ) are families of r × r and n × n covariance matrices,

respectively,
I Z(θ) is n × r with r ≤ n, all indexed by a set of unknown process

parameters θ.
I α is the r × 1 random vector and β is the p × 1 slope vector.

Space-varying intercept model is a special case where D(θ) = τ 2In,
α = (w(s1),w(s2), . . . ,w(sn))>, Z(θ) = In, and the n × n
K(θ) = σ2R(φ).
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For faster convergence, we integrate out β and α from the model and
first sample from

p(θ | y) ∝ p(θ)× N(y |Xµβ ,Σy | θ),

where Σy | θ = XΣβX> + Z(θ)K(θ)Z(θ)> + D(θ).

This involves evaluating

log p(θ | y) = const + log p(θ)− 1
2 log |Σy | θ| −

1
2Q(θ) ,

where Q(θ) = (y− Xµβ)>Σ−1
y | θ(y− Xµβ).

1. L = chol(Σy | θ), lower-triangular Cholesky factor L of Σy |θ
(O(n3/3) flops)

2. u = trsolve(L, y− Xµβ), solves Lu = y− Xµβ (O(n2) flops)
3. Q(θ) = u>u (2n flops)
4. log-determinant is 2

∑n
i=1 log lii , where lii are the diagonal entries in

L (n flops)
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Given marginal posterior samples θ from p(θ | y), we can draw posterior
samples of β and α using composition sampling.

We’ll consider a portion of this algorithm in a subsequent exercise.

For more details see Finley, A.O., S. Banerjee, A.E. Gelfand. (2015)
spBayes for large univariate and multivariate point-referenced
spatio-temporal data models. Journal of Statistical Software, 63:1–28.
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